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X Rhéologie

PREAMBULE

ravra pét ... tout s’écoule

La rhéologie est :

- [’étude des processus de déformation continus et irréversibles dans le temps.
- la science des lois de comportement des matériaux qui lient a un instant donné les
contraintes aux déformations (élasticité, plasticité, viscosité, etc.)

Petit Larousse (1989)

On distingue trois champs d’application qui structurent ce document :

- les solides,
- les liquides,
- les liquides complexes, qui comprennent les fluides réactifs, les suspensions et les

émulsions.
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Rhéologie 1.1

1 DEFINITIONS

1.1 COMPORTEMENTS ELASTIQUE, VISQUEUX ET VISCOELASTIQUE

Les matériaux sont traditionnellement décrits selon deux types de comportements idéaux : le
comportement purement élastique d’une part et le comportement purement visqueux d’autre
part. Nous considérons le cas d’une sollicitation en cisaillement pour traiter ces deux

comportements.
1.1.1 Comportement élastique
Si un solide est soumis a une contrainte, il atteint un état d’équilibre :

- Saréponse est indépendante du temps.

- Son comportement est défini par le module de cisaillement G, avec la loi :
=Gy (1.1)

ol 7 est la contrainte de cisaillement ou cission et ¥ la déformation en cisaillement.

1.1.2 Comportement visqueux

Si un liquide est soumis a une contrainte, il se déforme continuellement dans le temps :

- Saréponse dépend du temps d’application de la contrainte.

- Son comportement est défini par la viscosité 7, avec la loi générale :
=1y (12)
oll ¥ est la vitesse de cisaillement. Dans le cas général d’un fluide, 7 est fonction de 7 :
=1}y (13)

Ces notions sont résumées dans le Tableau 1.1.



1.2 Définitions

Tableau 1.1. Rappel des relations constitutives et géométriques pour 1’état élastique et visqueux.

Etat élastique Etat visqueux
Relations constitutives o=E¢ = 77)} (fluide newtonien)

T = Gy t=n(y)y  (fluide non newtonien)
Relations géométriques o=F/A = 7(p, conditions externes)

1= 7 (p, conditions externes)

113 Comportement viscoélastique

La plupart des matériaux réels comme ceux décrits au Tableau 1.2 ont un comportement qui

se situe entre ces deux extrémes. On parle alors d'un comportement viscoélastique.

visqueux <> viscoélastique <> ¢lastique

Tableau 1.2. Exemples de domaines d'application de la rhéologie.

domaines liquides solides
polymeéres - mise en ceuvre (moulage, - fluage

extrusion ... . .

. ) - relaxation des contraintes

- solution
métaux - mise en ceuvre (coulée) - fluage a haute température
médecine - écoulement du sang - déformation des os (avec I’age)
alimentaire - procédés (boissons, - résistance a la mastication

émulsions ...)

114 Diagrammes du comportement (approche "ingénieur")

Le comportement d'un matériau sous contrainte mécanique peut étre représenté par divers
diagrammes. Ces derniers permettent de mieux comprendre les phénomenes mis en jeu lors de
I’application d’une contrainte et de décrire la réponse du matériau a long terme. Deux
diagrammes caractéristiques de matériaux a comportement viscoélastique sont présentés ci-

dessous.
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Le diagramme élongation — temps (fluage)

Des courbes d'élongation en fonction du temps sont obtenues pour différentes contraintes. Si
on prend le montage décrit a la Figure 1.1a, il est possible d’obtenir le diagramme illustré a la
Figure 1.1b selon la charge. La courbe reliant les extrémités des courbes de fluage correspond

a la ligne de rupture.

LA
A —

0] >072 >03

_F
E(t) O="A

F , - -
+ + (") tt b logt
(a) (b)

Figure 1.1. (a) Schéma d’un essai a charge imposée et (b) la réponse du matériau.

Le diagramme module de fluage — temps

Le module effectif peut étre défini comme le module de fluage. Il correspond a la pente de la
courbe o = f(g). Le diagramme module de fluage E.-log(temps) permet d’étudier la
variation du module en fonction du temps (Figure 1.2). Lorsqu’une construction est chargée,
le module de fluage diminue en fonction du temps. Ainsi, apreés un temps t,, I’ingénieur doit

compter avec un module plus bas qu’apres un temps ..

E.(Da

t, log(t)

Figure 1.2. Variation du module de fluage E. en fonction du temps.
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1.2 TENSEUR DES CONTRAINTES

Les problemes de rhéologie reliant contraintes et déformations sont généralement en 2 ou 3
dimensions, ce qui implique une approche tensorielle. Dans le tenseur des contraintes, les

N

composantes oy correspondent a des contraintes de traction/compression, alors que les

composantes oy (avec i = k) correspondent a du cisaillement :

(0} (o} (o}
XX Xy XZ
O=|0 O O
yx yy yz
Ozx Ozy O,zz (1 4)

o Xy

XX

XZ

Figure 1.3. Représentation des composantes du tenseur des contraintes sur un élément cisaillé.

121 Tenseurs hydrostatique et déviatorique

On peut décomposer le tenseur des contraintes en la somme d'un tenseur hydrostatique op et

d’un tenseur de trace nulle, appelé tenseur déviatorique des contraintes :

- O 0
ov=|0 -p O|=-PI (1.5)
0 0 -p

ol P représente une pression hydrostatique (le signe — est une convention)
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Oxx+ p ny ze
Op =0 —0Om-| O o, +p o, (1.6)
sz Ozy O-zz+ p

Ainsi, lors d’un cas de sollicitation en cisaillement simple sous une pression hydrostatique P,

on peut déduire du tenseur des contraintes la partie déviatorique :

P T 0
oc=|t, -p O (1.7)
0 0 -p

avec 71 = i, et donc :

0O 7 O
op=0c+Pl=|t 0 O (1.8)
0O 0 O
12.2 Considérations analytiques pour les calculs des contraintes

Considérons le tenseur de contrainte :
oj=s;j+P=s;+1/30; avec i,j=1,2,3 (1.9
ol sest la contrainte déviatorique et P la pression hydrostatique qui vaut 1/3(o7; + 022 + 033).

On peut décrire la contrainte déviatorique et la pression en utilisant des lois similaires a la loi

de Hooke :

Sij = 2G6‘,‘j (1 .10)
P=3Kg (1.11)

ou g, est la déformation volumique (hydrostatique).
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Il existe quatre constantes qui décrivent le comportement élastique d’un matériau homogene,
isotrope : E, v, G et K. Celles-ci sont reliées entre elles pour un matériau homogene isotrope.

Notons que :

- K donne la déformation volumique,

- G donne la déformation a volume constant.

L’expérience montre que la déformation volumique ne varie pas dans le temps, tandis que la

déformation a volume constant dépend du temps pour un matériau viscoélastique. On a :

E(t) = ELCON module de Young pseudoélastique (1.12)
3K + G(t)
3K -2G(t
v(t) = SK-260 coefficient de Poisson pseudoélastique (1.13)
2(3K + G(t))

L’hypothese, vest constant, parfois utilisée n’est donc pas correcte. Lorsque G(#) tend vers O,

vtend vers 0.5 (cas d'un liquide incompressible).

13 CISAILLEMENT ET EXTENSION

131 Cisaillement simple

La Figure 1.4 montre le cas du cisaillement dit simple d'un élément de matiere d'épaisseur dy

cisaillé selon l'axe x de dx a la vitesse uy.

dx =du dt T

y

X

z

D S —
T

Figure 1.4. Géométrie du cisaillement simple.

Ce cisaillement résulte de 1'application de forces F paralleles et opposées, appliquées sur les

faces supérieure et inférieure de 1'élément sur ses faces d'aire A, autrement dit a une contrainte

en cisaillement 7:
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T=§ en[N/mzjz[Pa]

(1.14)
On définit également les grandeurs suivantes :
. dx

- vitesse d'écoulement : u = E (1.15)

dx
- cisaillement : y = — (1.16)

dy

. d ddx d
- vitesse de cisaillement : y = a2 (1.17)
dt dtdy dy

La Figure 1.5 compare le cisaillement simple, unidimensionnel, avec celui du cas plus
général, bidimensionnel. Ces schémas considerent ce qui passe lors d’une déformation
infinitésimale d¢ sur une longueur élémentaire £. On définit dans ce cas la déformation en

cisaillement de la fagon suivante :

(5+df)-& dg
e g (1.18)

Si on considere le cas a deux dimensions, par un raisonnement analogue, on obtient les

résultats suivants :

_ds  g¢ (1.19)

avec ¢ déplacement en x et {'déplacement en y.

dg
| E+dE IdE | E+dE >

\j

E £

Figure 1.5. Description d'une déformation infinitésimale sur un élément lors d’un cisaillement simple (a gauche)
et a deux dimensions (a droite).
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Généralement, lors des problemes rhéologiques, on est confronté a du cisaillement simple, qui
est la facon la plus directe et la plus aisée de mesurer la viscosité d'un matériau. Il y a
cependant des limitations : amplitude de déformation, vitesse de cisaillement restreinte

(001 s'< y <50 s, sensibilité de la mesure ...

Il est par ailleurs important de souligner que la définition de vy est liée au choix du référentiel.
Soit le cas de cisaillement simple représenté a la Figure 1.6 (la plaque supérieure est en
mouvement, alors que la plaque inférieure reste fixe). Alors, un incrément dy >0 correspond
a un incrément du > 0. Ainsi, le gradient de cisaillement (= pente de la droite du profil de
vitesse) est positif : y = ﬂ Par contre, si la contrainte de cisaillement est due au mouvement
de la plaque inférieure, un incrément dy >0 correspond a un incrément du <0. Des lors le
gradient de cisaillement est négatif. On définit alors parfois dans ce cas particulier Y comme
V= —5, afin qu'il soit positif, ou bien il arrive que certains prennent toujours la valeur

absolue de la vitesse de cisaillement.

Fixe

Fixe

Figure 1.6. Représentation du profil de vitesse dans le cas d’un cisaillement simple provoqué par le mouvement
de la plaque supérieure (gauche) ou de la plaque inférieure (droite).

13.2. Extension

Dans le cas d’un écoulement en extension décrit a la Figure 1.7 on a le champ de vitesse :

- u=¢x (1.20)
é

- u="3Y (121)
é

- u="57 (1.22)
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Fyy
Y
I - oo, — -
z x
Figure 1.7. Elément sous un écoulement en extension.
La viscosité en extension 77z est alors définie par :
- Ou- Oy = Ou- 0= € Ni(€) (1.23)
- Oy=0x=0:=0 (1.24)

133 Fonctions matérielles

Un liquide viscoélastique se caractérise par trois fonctions matérielles, a savoir 7, Ni, Na.

Pour le cisaillement simple on a les relations suivantes :

- la deuxieme différence normale : No(V ) = Gy - Oz

-2
- oy =NV

-2
- p=NSY

On a, en général, les inégalités suivantes :

- N>0
- N <O
I = ||

la viscosité en cisaillement : 77()} )= 0w/ Y=r1/Y

la premiere différence normale : Ni(} ) = 0w - Ty

(1.25)
(1.26)

(1.27)
(1.28)

(1.29)

(1.30)
(1.31)

(1.32)
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14 CAS DE SOLLICITATIONS

Nous distinguons divers types de sollicitations :

- le fluage ou I'on mesure 1’évolution de la déformation lorsque la contrainte G est
constante,

- larelaxation des contraintes lorsque la déformation ¢ est constante,

- la recouvrance de la déformation lorsqu’une contrainte constante o, est appliquée
pendant un laps de temps fini, puis est supprimée,

- l'effacement de la contrainte lorsqu’une déformation constante & est appliquée pendant

un laps de temps fini, puis est supprimée.

14.1 Fluage

Il s’agit d’une déformation sous une contrainte appliquée constante. Le matériau va se
déformer sous I’effet de la contrainte au cours du temps. Le fluage est décrit par 1’expérience
illustrée a la Figure 1.8. On applique une contrainte o; a une éprouvette et on observe une

déformation qui varie au cours du temps.

/ ' A= %
N ——
/ : A
/ 1

O
il | 0
Z

Al(t) K
(a) (b) ()

Figure 1.8. (a) Schéma d’un essai de fluage, (b) sollicitation du matériau et (c) sa réponse.

Le fluage est associé a la fonction de complaisance de fluage J(¢) :

e(t)

Oy

J(t) = (1.33)
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La Figure 1.9 montre deux montages expérimentaux réalisables pour ce type d’essai.

2077 ,

I(t) échantillon échantillon
d(t)
charge 7/”///
/
(a) (b)

Figure 1.9. Essais de fluage en traction (a) et en appliquant une pression interne (b).

14.2 Relaxation de la contrainte

Ce cas de sollicitation consiste a appliquer au matériau une déformation Al et de le laisser
allongé, tel quel, comme schématisé a la Figure 1.10. Au cours du temps, une relaxation des

contraintes va permettre une évolution de 1’état initial.

_ Al _F
NN? S : > 70 | N
F(t) ;lg)
__A 80
V=
& I VI . t
(a) (b) ()

Figure 1.10. (a) Schéma d’un essai de relaxation, (b) la sollicitation du matériau et (c) sa réponse.

Comme précédemment, il convient d’introduire une fonction dite de relaxation R(¢) qui décrit

cette évolution au cours du temps :

o(t)

R(t) = (1.34)

€
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143 Recouvrance de la déformation

Ce type de sollicitation se fait en deux étapes. Dans un premier temps, on fait fluer le
matériau, puis dans un second temps, on retire la contrainte. L’état de la contrainte est décrit a

la Figure 1.11.

-

t t

Figure 1.11. Profil de la sollicitation lors d’un essai de recouvrance de la déformation.

On observe alors une diminution de la déformation résultant de la suppression de la
contrainte. La déformation observée est schématisée a la Figure 1.12 (cette représentation fait
appel au principe de superposition de Boltzmann qui sera vu au Chapitre 3). Notons qu'il
existe une recouvrance instantanée due a la réponse élastique du matériau qui n’est pas décrite

dans la figure.

A ' € |

|
|
| +
|
|
|

-

-
|

t t t t

Figure 1.12. Description et décomposition de la réponse du matériau a un essai de recouvrance de la
déformation.

144 Effacement de la contrainte

Ce type de sollicitation se fait en deux étapes. Dans un premier temps, on impose une

déformation constante a un matériau, puis on sollicite ce matériau de fagon a ce qu’il retrouve

sa longueur initiale. La sollicitation et la réponse du matériau sont illustrées a la Figure 1.13.
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1.13

t

Figure 1.14. Sollicitation (courbe de gauche) et réponse (courbe de droite) du matériau a un essai d'effacement

de la contrainte.

145 Cas général

Un matériau viscoélastique n’a pas exactement le comportement décrit au paragraphes

précédents a cause de sa réponse élastique. Dans le cas par exemple d'un essai de recouvrance

de la déformation, le matériau adopte le comportement décrit a la Figure 1.14.

Ed(t)

+
g, (t)

£4(0%)

‘A

£(0")

Ed(t)

[
i jy ey(t)
A

t

Tt

Figure 1.14. Description de la réponse d’un matériau viscoélastique a un essai de recouvrance de la déformation.

On peut décomposer, comme 1’indique la figure, le comportement en trois parties. Chaque

partie a un comportement qui lui est propre. Ces parties sont les suivantes :

- Déformation élastique instantanée €,(0") :

lorsque la contrainte est supprimée.

cette déformation est réversible et disparait

- Déformation élastique retardée ¢ 4(t) : cette déformation est également élastique mais sa

recouvrance totale demande du temps. Cette déformation est aussi appelée fluage primaire.

- Ecoulement visqueux € ,(t) : cette déformation est irréversible et elle est appelée également

fluage secondaire. Si on effectue un essai de recouvrance, la déformation apres un temps

infini correspondra au fluage secondaire.
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15 VISCOSITE ET NOMBRES ADIMENSIONNELS

151 Viscosité

Il existe plusieurs définitions de la viscosité selon son utilisation, que 1'on retrouvera aux

Chapitres 6 et suivants.
Viscosité dynamique n

= Z [1 Pa:s = 10 P] (P = Poise) (135)
y
n = f(T’p,)./’T)

C’est la relation usuelle qui permet de suivre la variation de la résistance a la déformation

d’un matériau en fonction de la contrainte appliquée ou de la vitesse de cisaillement.

Viscosité cinématique v

= 2 {1 my/s = 10" St] (St = Stokes) (1.36)
0

Pour certains probleémes, il peut étre utile d’avoir un symbole représentant la viscosité divisée

par la masse spécifique du fluide.

Viscosité relative 1,

T’rel = ﬂ (1 37)
Mo

ol 77 est la viscosité d’une suspension de particules dans un solvant et 79 est la viscosité du
solvant. On utilise cette viscosité en rhéologie des suspensions pour quantifier les effets
hydrodynamiques de suspensions en solution (remarque: c’est une viscosité

adimensionnelle).
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Viscosité spécifique ),

T]sp = = 771‘431 - 1 (138)

Cette viscosité a la méme fonction que la précédente (remarque: c’est une viscosité

adimensionnelle).
Viscosité intrinséque [ 17]

[n]=1mn, (139)
=0
)

ol ¢ représente la concentration de la suspension (remarque : cette valeur est généralement

utilisée en chimie).

152 Nombres adimensionnels

Les nombres adimensionnels sont des rapports entre deux grandeurs de mémes unités,
introduits dans le cadre de la mécanique des fluides, et que I'on retrouvera dans I'ensemble du

polycopié.

Nombre de Reynolds

On définit le nombre de Reynolds Re pour des liquides a viscosité 77 constante :

Re = p_Vd
n (1.40)

ol pest la densité, V la vitesse caractéristique du fluide et d une dimension caractéristique de
la géométrie de I’écoulement. Le nombre de Reynolds donne le rapport entre les forces

d'inertie et les forces visqueuses dans un écoulement.
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Nombre de Weissenberg

Le nombre de Weissenberg We est défini comme :

We=A Y
d (141)
Dans cette relation, A est le temps caractéristique du fluide et vaut :
P
2ty (1.42)

V/d est un temps caractéristique du procédé d’écoulement. Ce nombre est une expression de la

vitesse de cisaillement et de I’amplitude de déformation.
Nombre de Deborah

Le nombre de Deborah De est une mesure de I’'importance relative de 1’€lasticité dans le
processus particulier d’un écoulement lent. L’ origine de son nom vient d’une citation se
trouvant dans la Bible (le cantique de Deborah, Juges 5.5) 'Les montagnes ruissellent devant

Dieu'. Ce nombre est défini comme valant :

E (1.43)

ol ¢ est le temps caractéristique du procédé d’écoulement, et 4 le temps caractéristique
représentatif du liquide. Comme ce nombre mesure 1’importance relative des effets élastiques
par rapport aux effets visqueux, on peut considérer les deux cas limites. Pour un solide
élastique, le nombre de Deborah tend vers ’infini, tandis que pour un fluide visqueux
newtonien, il vaut 0. Pour le cas intermédiaire ou la viscoélasticité est trés prononcée, le

nombre de Deborah va tendre vers 1.
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Nombre de Trouton

On définit le rapport de Trouton Tr comme le rapport entre la viscosité d’élongation et la
viscosité de cisaillement. La viscosité d’élongation ou d’extension est aussi appelée viscosité

de Trouton. Ce nombre vaut :

(1.44)

Pour des liquides newtoniens, ce rapport vaut 3. Pour des solutions de polymeres a masse

moléculaire élevée, il est compris entre 10 et 10*.
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2 MODELES MECANIQUES ET PRINCIPE DE BOLTZMANN
2.1 REPRESENTATION DU FLUAGE

La représentation graphique du comportement de matériaux sous contrainte permet de

faciliter la recherche des lois permettant de décrire, voire de prédire ce comportement.
2141 Courbe idéalisée pour une contrainte constante

Prenons, par exemple, le cas du fluage préalablement décrit au paragraphe 1.4.1. On peut

alors tracer le graphique élongation - temps montré a la Figure 2.1.

ligne de rupture

01 < 02< 03

~Y

Figure 2.1. Graphique élongation - temps pour un essai de fluage a différentes contraintes.

La réponse a la contrainte o peut étre divisée en trois zones :

1) fluage primaire : représente la région ou la vitesse de fluage diminue. L.’écrouissage
du matériau est dominant dans le cas des métaux.

2) fluage secondaire : région ou 1’écrouissage est compensé par la restauration. Pour
cette raison, la vitesse de fluage est plus ou moins constante.

3) fluage tertiaire : région ou I’affaiblissement structural de la résistance par la formation
d’un endommagement microstructural devient important. C’est le dernier stade avant

la rupture.

Afin de mieux comprendre ce que sont réellement ces zones, il convient d’étudier la Figure

2.2 qui décrit le logarithme de la vitesse de fluage en fonction de 1’élongation. Ce graphique
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est en fait un plan de phase (voir K. Arbenz, A. Wohlhauser, Analyse numérique, PPUR,
Lausanne, 1990).

log €

0,1 constant

= stade

stade J .
stade secondaire .
| tertiaire

primaire |

'
€
Figure 2.2. Représentation de la vitesse de déformation en fonction de la déformation.

2.1.2 Courbes de fluage

La Figure 2.3 montre des courbes de fluage fournissant des informations utiles pour la vie du
matériau sous contrainte. Ces courbes nous donnent les relations entre la déformation, la
contrainte et le temps nécessaire pour atteindre un certain état, c’est-a-dire que connaissant

deux des trois parametres, on peut déterminer le troisieme.

A

g5(t5)

()
e5(t) T
gq(ty)

Figure 2.3. Courbes de fluage a différentes contraintes.

Par exemple, on peut chercher le temps nécessaire pour obtenir une déformation donnée pour
différentes contraintes appliquées ; on peut aussi déterminer la contrainte admissible que I’on
peut appliquer a une structure pour un temps d’utilisation et une déformation fixés ; ou
encore, il est possible de trouver la déformation apreés un temps de sollicitation et une

contrainte donnés.
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213 Courbes des modules de fluage

Les modules de fluage sont le rapport entre les contraintes et les déformations :

O;
E;(t) = o) 2.1

N

On constate qu’ils varient avec le temps lors d’une sollicitation a contrainte constante

(fluage). Leurs variations sont représentées sur la Figure 2.4 qui est un diagramme module -

temps.
E
CA 01<0p

E === |
E (t)o_—_ >

cl, 2 = 01
Ecz(tl) | :
E_ () -——- - %

Figure 2.4. Courbes des modules de fluage a différentes contraintes.

Ce graphique peut étre construit a partir des courbes de fluage (paragraphe précédent). Les
quatre marques présentes sur les Figures 2.3 et 2.4 correspondent entre elles. On note deux

observations :

- E. diminue lorsque la charge augmente

- E. diminue lorsque le temps augmente

214 Courbes (isochrones) contrainte - déformation

Les courbes isochrones sont une troisi¢me représentation graphique du fluage comme le
montre la Figure 2.5. Ces graphes, contrairement aux deux autres, se lisent horizontalement
ou verticalement et représentent la contrainte en fonction de la déformation pour différents

temps de sollicitation.
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S t <t t
t
oOF-—¢--——————=
| N1 I
O 7 |
L | |
| |
L L
- S d—lN 4—»(\l €
N N N e
—_— N — o
w w w w

Figure 2.5. Courbes isochrones a différents temps. (Attention, ces graphes se lisent horizontalement ou
verticalement).

Comme précédemment, il est possible de tracer ces graphes a partir des courbes de fluage. On

a également représenté sur ces courbes isochrones les points équivalents pour les trois Figures

23,24et25.
215 Représentation mathématique

La modélisation des courbes de fluage peut se faire a 1’aide de fonctions mathématiques. Une
des nombreuses possibilités existantes consiste a utiliser la loi de puissance. Ainsi la

déformation peut étre décrite par le modele empirique de Findley :
et) =€, +mt" (22)
Les constantes &, m et n dépendent de plusieurs facteurs tels que :

- le matériau,
- la contrainte appliquée,

- la température.

Le fluage secondaire caractérisé par la déformation & a souvent un taux de déformation d&/dr

constant, mais dépendant de la contrainte. Il peut se caractériser par une loi du type :

e (t)=Ato” et ¢ =Ac" (2.3)

Les constantes A et b dépendent des facteurs suivants :

- le matériau,

- la température.
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2.1.6 Une équation généralisée

Il serait intéressant et surtout pratique de pouvoir obtenir une relation décrivant au mieux le
comportement global des matériaux au fluage. Une équation semi-empirique valable pour
toute la plage de fluage est donnée par la somme des diverses composantes propres a chaque
zone :
00 n 4
e(t) = E+Bo [1-exp(-t)]+Dto (2.4)
Cette expression est représentée sur la Figure 2.6. Les divers termes correspondent a

différentes expressions pour I’élongation sous certaines conditions. Il s’agit de :

- Loi de Hooke : € = 0%5 (2.5)
- Fluage du modele de Kelvin : (t) = O%?(l - exp(—%)) (2.6)
(Le modele de Kelvin sera étudié au Chapitre 3)
- Fluage secondaire : g (t) = Ato® 2.7
€total

Figure 2.6. Représentation de I’expression semi-empirique (2.4).

22 REPRESENTATION DIFFERENTIELLE DU COMPORTEMENT VISCOELASTIQUE

Pour décrire le comportement d’un matériau, il est nécessaire d’avoir a disposition des
modeles représentant son comportement avec une bonne précision. La description générale
d’une équation constitutive viscoélastique linéaire relie la contrainte a la déformation selon la

relation :

Po(H)=Qe& () (2.8)
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Cette relation est I’équation de base permettant de caractériser le comportement d’un

matériau, ou P et Q sont des opérateurs différentiels linéaires définis tels que :

N9 J'
P=Eai¥ et Q=Ebi§ (2.9)

ol a et b sont des constantes propres au matériau. Le nombre de constantes aj, b; dépend de la
réponse viscoélastique du matériau.
2 2
do do de d'e

a,0+a,—+a —+...=b0£+bla+ b2?+...

2.10
dt dt? 2.10)

Dans la plupart des applications, deux ou trois termes suffisent a décrire le comportement
avec précision. Concretement, les opérateurs différentiels peuvent €tre assimilés a des
éléments mécaniques: des ressorts ou des amortisseurs, afin de décrire un comportement
élastique, viscoélastique ou visqueux (Tableau 2.1). Le ressort décrit un matériau élastique,
I’amortisseur un matériau visqueux. Seule la combinaison de plusieurs de ces éléments

permet de décrire le comportement d’un matériau viscoélastique linéaire.

Tableau 2.1 Présentation des éléments de base, c’est-a-dire le ressort caractérisant la contribution élastique et
I’amortisseur correspondant a la contribution visqueuse.

ressort amortisseur
AC A©
. e .
“E €
de,
Or . Egr Ga = 17 dt

Y

Les relations décrites dans le Tableau 2.1 peuvent étre reliées a 1’équation générale vue a la

page précédente. Pour le ressort, il suffit de poser :

P=1 et Q=E (=bi=E) 2.11)

On peut procéder de méme avec I’amortisseur. Ces modeles peuvent étre étendus a des
modeles en trois dimensions, mais ceux-ci deviennent trés complexes et nécessitent de longs

calculs. On se limitera dans ce cours a des modeles unidimensionnels.
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2.3 LE MODELE DE MAXWELL

Le modele de Maxwell réunit un ressort et un amortisseur comme décrit a la Figure 2.7.

* o(t)

\

Al(t) \

o
* o(t)

|

Figure 2.7. Représentation schématique du modele de Maxwell.

Les éléments “mécaniques” sont montés en série, ce qui donne les relations suivantes :

Al(t) de(t) de () de,(t)
- pour la déformation : €(t) = T =g+, ()= T a0 (2.12)
- pour la contrainte : 0(t) = 0 (t) = 0,(t) (2.13)

En remplacant les valeurs des déformations des éléments constitutifs par leurs expressions en

fonction de la contrainte, on obtient :

de ldo

= —+lo (2.14)
dt E dt n

Ce résultat peut étre obtenu en remplacant les constantes de 1’équation générale (2.9) par les

valeurs suivantes :
p=1l:a,=1/n et a=1/E (2.15)
q=1:bp=0 et b =1 (2.16)
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231 Fluage (Maxwell)
Les conditions pour ce type d’expériences sont :

- 0=0 pour t<O (2.17)
d
~ o=ap et d—?:o pour t>0 (2.18)

Par la relation (2.14), on trouve :

de(t) o,

i n

pour t>0 (2.19)
En intégrant, on trouve la relation suivante :
o N e
e(t) =—2t+C ou C estune constante d’intégration. (2.20)
n

En utilisant les conditions initiales définies comme étant :

O,
t(0" 0)=¢, = —
0)=¢e0)=¢ Z 221)

on trouve la relation propre au fluage du modele de Maxwell :

T (2.22)

e(t)=Zog4+ o =ﬂ(1+£t) ~I®)-o
n
On définit alors la fonction J(7), appelée fonction de complaisance de fluage, comme décrit a

la page 1.12. J(¥) est dans ce cas :

J(t)=E’1(l+Lj=%+%L=J+Jv(t) avec T, =%
To To (2.23)

7o est défini comme étant le remps de retard pour I’élément de Maxwell.
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Le fluage est donc décrit par la Figure 2.8. Le modele de Maxwell n’est pas bon pour prédire

un fluage.

&)

»
L

t

Figure 2.8. Prédiction par le modele de Maxwell de la réponse d’un matériau viscoélastique a un essai de fluage.
Le modele semble inadapté a ce type de sollicitation (cf. Figure 1.9).

232 Relaxation (Maxwell)

En utilisant la relation 2.14 et la condition de la sollicitation (&= constante, € =0),on a :

—+—0 (2.24)

o=

—_—— 10 =T E.Fo' = 0 avec 'L'E = (225)

On définit 7, comme étant le temps de relaxation pour 1’élément de Maxwell et 1’on pose les

conditions initiales qui sont: o = oy a t =0, on aboutit a :

o()=0,esp|- Lo - L=k o RO)=R()=Eew|-L] o2

&

ou R(t) est la fonction de relaxation comme définie au paragraphe 1.6.2. La relaxation de la

contrainte est représentée a la Figure 2.9.
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o\

>t

Figure 2.9. Prédiction par le modele de Maxwell de la réponse d’un matériau viscoélastique a un essai de
relaxation. Le modele semble adapté a ce type de sollicitation.

233 Recouvrance de la déformation (Maxwell)

En observant les éléments constitutifs du modele (Figure 2.7), on remarque que, lors de la
sollicitation de recouvrance de la déformation (cf. Chapitre 1), le ressort retrouve sa longueur
initiale, tandis que I’amortisseur garde celle qu’il avait lorsqu’on a supprimé la charge. Par
conséquent, le modele de Maxwell ne décrit pas un comportement viscoélastique pour ce type

de sollicitation.

24 LE MODELE DE KELVIN (VOIGT)

Dans ce modele, on positionne les éléments comme le montre la Figure 2.10.

* o(t)

vl

Al() + o(t)

-

Figure 2.10. Représentation schématique du modele de Kelvin.

Les éléments “mécaniques” sont montés en parallele, ce qui nous donne :
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Al(t)

0

- pour la déformation : £(t) = =¢€.(t)=¢,(t) (2.27)

- pour la contrainte : 0(t) = 0,(t) + 0, (t) (2.28)

On trouve la relation propre au modele de Kelvin :

déa
o=Ee+ n—g
dt (2.29)

Ce résultat est obtenu en mettant les valeurs ci-dessous dans 1’équation générale 2.10 :

p=l:ap=1 et a =0 (2.30)
q=1:by=E et b =n (2.31)
241 Fluage (Kelvin)

En procédant de maniere identique au paragraphe 2.3.1, on trouve la relation suivante :
o, t N yeoix .
e(t) = E + Cexp| ——| ou C est une constante d’intégration (2.32)
TO

Avec les conditions initiales: &y = £(0)=0 at=0, on obtient :

e(t):%{l—exp{—%H:J(t)Go avec 76:% et J(t)z%+%exp{—%}z]+]v(t) (2.33)

Notons que la fonction de complaisance J(¢) differe de celle du modele de Maxwell. De
nouveau, on définit 7, comme étant le temps de retard pour I’élément de ce modele, et il vaut

n/E. On peut représenter le fluage a la Figure 2.11.
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1t

Figure 2.11. Prédiction par le modele de Kelvin de la réponse d’un matériau viscoélastique linéaire lors d’un
essai de fluage. Ce modele semble bien approprié pour ce type de sollicitation.

24.2 Relaxation (Kelvin)
En utilisant la relation constitutive du modele de Kelvin et la condition de la relaxation

&= constante (d’ou ¢ = 0), on décrit la relaxation d’un simple élément élastique. Le ressort et

I’amortisseur vont se trouver en équilibre ce qui se traduit par I’expression :
o(t)= Ee, (2.34)
243 Recouvrance de la déformation (Kelvin)

Les conditions de cette expérience (0 = 0 = 0) nous amenent a I’expression :

de
" (2.35)
Donc, on obtient la relation suivante :
t
e(t) = ¢, exp(— —) ol 7,est le temps retard et il vaut 1/F (2.36)
I’()'

2.5 RESUME MAXWELL/KELVIN

Toutes les relations trouvées dans les paragraphes précédents concernant le modele de

Maxwell et celui de Kelvin sont résumées dans le Tableau 2.2.
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Tableau 2.2. Résumé des considérations faites sur les modeles de Maxwell et Kelvin pour les trois différents

types de sollicitations (fluage, relaxation de la contrainte et recouvrance de la déformation).

Modele de Maxwell

Modele de Kelvin

Fluage o ¢ o )
€(t)=4(1+—) g(t) =—2|1-exp| - —
E TU E TO'
€ €
Kt t
ne montre pas de fluage fini montre un fluage fini
MAUVAIS BON
Recouvrance &(t) = constante ¢
e(t) =g exp(——)
TO'
€ €
li t t
ne décrit pas la recouvrance
MAUVAIS BON
Relaxation

o(t) =0 exp(— TL)

€

o

N

o(t) = constante

A€

—>t

décrit la relaxation, mais la courbe tend décrit un élément élastique
vers 0 lorsque t tend vers 1’infini.

BON MAUVAIS
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2.6 LE MODELE STANDARD LINEAIRE (SLSM : STANDARD LINEAR SOLID MODEL)

Ce modele permet de décrire tous les comportements étudiés jusqu’a présent. Il est composé

d’un modele de Kelvin mis en série avec un ressort comme représenté a la Figure 2.12.

EII

AVAVANE
E;
o(t) O—/\/\/\ o(t)
- Q —

|l \| A
|‘ ’| >

lo Al(H)

Figure 2.12. Représentation schématique du modele standard linéaire.

Les relations constitutives propres a chacun des deux éléments sont :
o, =Eg; et oy =Eg; +ng; (2.37)

Les indices I et I se rapportent aux ressorts I et II. On n’arrive pas a résoudre cette équation
directement, car on a affaire a ¢ et de/dt. Une méthode pratique et élégante pour résoudre ce
probleme est de passer par la transformée de Laplace. Les explications de base sur cet outil

sont données en annexe, section 2.8. On a donc (pour les indices I et IT) :

L(o(t)) = o(s)

N (2.38)
L(e(1) =£(s)
En posant &1 + & = & on trouve :
Lo(t)=E L(e))=E L(e,)+n[sL(e,)=€0)] o €(0)=0 559
6(s)=E,E =E,&,+nsE, (2.40)
De plus :
- - - - © o
E tE, mEDE=—H+
E, E,+ns (2.41)
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Donc :

§:6LE,+E”+T]SJ
E,(E,+ns)

(242)
G(E,+E,)+0ns=EE,E, +EEs (2.43)
En appliquant Laplace inverse :
do de
o(E, +E,,)+nd— =EE,e+En—
4 t (2.44)

On retrouve ici I’équation de base 2.10 du paragraphe 2.2. On retiendra la relation générale

pour le SLSM :

0+1,0=Eie+EtTe (2.45)
ou
n
T, = S 246
‘" E+E [s] (246)
EE
E, = ——— [Pa 247
Sy [Pa] (247)
26.1 Fluage (SLSM)

On a besoin de 1’équation (2.45) sous la forme :

. E, E+E, 1.
8+_€=E_O+EO
n n
! ! (2.48)

En utilisant la condition du fluage, & =0, on trouve en posant les conditions initiales :

(0
£(0)=—=
E, (2.49)
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le résultat suivant :

(o} (o) t
e(t)=—"+ —‘[1 - exp{——H
E, E T
1 1 o (250)

ou le temps de retard 75, vaut :

—1
E (2.51)
On définit J(#) comme étant la fonction de complaisance de fluage par :
11 AR
Jt)=—+—|1-exp| -—— ——+J (1)
E, E, L T )
(2.52)
On définit aussi les modules relaxé et non relaxé :
Module non relaxé (r=0) : E.= E=1/J, (2.53)
EE
Module relaxé (1 = ®) : E, = ——— =1/J, (2.54)
E +E;

2.6.2 Relaxation (SLSM)

La procédure pour la relaxation est la méme que pour le fluage, avec la condition € = 0. En

utilisant les conditions initiales, 0(0)=¢E,, on trouve le résultat suivant :

E,

(2.55)

ou le temps de relaxation 7, vaut :
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COE+E (2.56)

On définit la fonction de relaxation R(t) par :

R(t) = —/—— 1+£ex i\ E.+R(t)
EI + EII pk T J !
(2.57)
ainsi que les modules relaxé et non relaxé :
Module non relaxé (t=0) : E, = E, (2.58)
z EIEII
Module relaxé (t= ©): E; = | ——— (2.59)
E +E;
La Figure 2.13 montre une représentation des fonctions R(7) et J(f)"' dans le temps.
La Figure 2.14 explique la signification physique du temps de retard, qui se traduit par :
R (t+7,) 1 »
R() “epft] "
g P (2.60)

ol R est le module exempt de la partie élastique. Le temps de retard est donc le temps
nécessaire pour réduire la partie non-élastique du module d’un facteur e =2.718. On peut

procéder de méme pour le temps de relaxation z.

~Y

Figure 2.13. Représentation des fonctions R(¢) et J(r)!  Figure 2.14. Graphique expliquant la signification
dans le temps. physique du temps de retard.
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2.6.3 Recouvrance de la déformation

La recouvrance est la tendance d’un matériau viscoélastique a revenir a son état de contrainte

interne nul, apreés que la contrainte externe a été supprimée a un certain temps #;. La

recouvrance n’est pas instantanée comme on peut le voir sur la Figure 2.15.

O A c A e (t))

>

Figure 2.15. Sollicitation (a) et réponse (b) du matériau lors d’un essai de recouvrance de la déformation.

En intégrant 1’équation (2.45) sous la forme vue au paragraphe 2.6.1 :

de E; _E1+Eno+Ld‘7

d n En EIE 2.61)

On peut trouver la déformation a ¢ > #;.

Il faut diviser I’intervalle de temps [0 ; 7] en deux intervalles : [0 ; #1], qui représente la durée
de chargement et [# ; ¢], qui est 'intervalle de temps apres le relachement de la contrainte. On
devrait normalement diviser I’intervalle de temps en quatre intervalles : [0 07], ]0*; @,
[t1; t17] et 65 ], car il existe une déformation élastique instantanée entre 0~ et 0* et entre #1°
et #1*. Ici, nous allons simplifier le probléme et dire que les temps de chargement et de

déchargement de la contrainte sont infiniment petits.

Pour Uintervalle [0 ; t;]

. do , P .
La contrainte est constante et vaut oy, donc T 0. L’équation a intégrer devient :

o, (2.62)



Rhéologie 2.19
Pour faire I’intégration, on met la relation sous la forme :
f de _ f dt (2.63)
- E[ + EII o )/ € 0
(2 E 0
( . B M
En effectuant le calcul, on aboutit a la relation suivante
E,+E E E+E E
-1[111( Ay 00——”s(q))—ln( AR ”00)]=r1 (2.64)
E, Em n Em nE, J
Apres avoir isolé ¢ (1) et a partir des définitions de Er et 75, I’équation devient :
o t o
e (t)==|1-exp|-— ||+ = 2.65
(-7 o ). 2 (265
Pour Uintervalle [t; ; t]
) do N i N
La contrainte est nulle, donc G(t) 5 0. De plus, &(t1") = &(t1) - €slastique = €(t1) - E_
1
£ ()= 22| -exp L (2.66)
I Ell To .
Puis, sur [#1; 7], ’équation a intégrer prend la forme suivante :
de E
LT ) (2.67)
d n
En introduisant les bornes d’intégration, 1’équation devient :
(1 ¢
f de_ b (g (2.68)
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Le calcul donne :
h{ﬂﬁ) b (r-1) (2.69)
() m

La déformation totale vaut alors :

(1) = e(r;)exp(— - t1+) (2.70)

T

o

11 faut remplacer &(#1") par sa valeur calculée précédemment et on obtient :

g(t)—&ex _t ex L -1 =% 1—exp _h exp _I7h pour t>t¢
E, b To P To E, Ts Ts 1 (2.71)

2.7 PRINCIPE DE SUPERPOSITION DE BOLTZMANN
271 Viscoélasticité linéaire

Le comportement viscoélastique linéaire est un comportement appelé thermorhéologique
simple, c’est-a-dire qu’il n’y a pas de changement de phase, ni de changement de
microstructure. On représente graphiquement ce genre de comportement a la Figure 2.16. On
note que les courbes normalisées se superposent toutes. Il y a une validité réelle pour la
plupart des matériaux si on travaille en petites déformations (¢ < 1 %). Pour la suite, on se
bornera a des petites déformations. Un matériau thermorhéologiquement simple satisfait le

principe de superposition temps-température qui fera 1'objet du Chapitre 5.
AO AG/GO

V(jo

Y-
Y

Figure 2.16. Représentation graphique d’une conséquence de la viscoélasticité linéaire.
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Ainsi, la fonction de relaxation R(f) ne dépend pas de I’amplitude de la déformation et la
fonction de complaisance J(f) de 1’amplitude de la contrainte. Pour un mouvement

oscillatoire, E” et E” et 17 ne dépendent pas de la déformation (voir Chapitre 3).

272 Principe de superposition

Ce principe proposé par Boltzmann permet d’étudier la réponse d’un matériau soumis a une
combinaison de sollicitations. Le principe énonce que la réponse a la somme des sollicitations
est égale a la somme des réponses que le matériau subirait s’il était soumis aux sollicitations

correspondantes prises isolément.

Nous allons illustrer le principe de superposition de Boltzmann avec deux exemples de
sollicitation. La premiere sollicitation (recouvrance de déformation) et se décompose en deux
étapes. Lors de la premiere étape le matériau flue sous une contrainte constante (Figure 2.17).
Lors de la seconde étape, une contrainte opposée et de méme valeur que celle de la premicre

¢tape est ajoutée a partir d’un temps # (Figure 2.18).

Y

-, —— = — —

t

1 t
(a) (b)

Figure 2.17. Sollicitation (a) et réponse (b) du matériau correspondant a la premiere étape de la recouvrance de la
déformation.

Y

(a) (b)

Figure 2.18. Sollicitation (a) et réponse (b) du matériau correspondant a la seconde étape de la recouvrance de la
déformation.



2.22 Modeles mécaniques

Son comportement est décrit par les relations suivantes (les indices 1 et 2 correspondent a la

premiere étape et a la deuxieme étape) :

Pourt<ti:o1=ovet &= opJ(F)

Pourt>ti: m=—-ovet e =—0coJ(t— 1)

Le comportement global (o= o1 + oz et £= &1 + &) est décrit a la Figure 2.19.

1

(a) (b)

Figure 2.19. Sollicitation globale (a) et réponse globale (b) du matériau lors d’un essai de recouvrance de la
déformation.

La déformation globale est donc donnée par :

e =0pJ(t) pour O0<tr<t (2.72)

& =0pJ(t) —opJ(t—t)) = oplJ(t) = J(t—11)] pour t=1 (2.73)

La comparaison de cette sollicitation avec la recouvrance de la déformation (paragraphe
2.6.3) est intéressante, car les deux phénomenes se ressemblent beaucoup. On remarque pour
la superposition de Boltzmann, qu’a partir d’un temps ¢1, il y a deux contraintes opposées et
de méme valeur qui s’annulent. Pour la recouvrance de la déformation, la contrainte initiale

est tout simplement supprimée a un temps #;.

Considérons maintenant une seconde sollicitation, représentée a la Figure 2.20.

Sk &)

01

all
t 6 ™
(a) (b)

OH-——————~ —

Figure 2.20. Sollicitation (a) et réponse (b) d’un matériau visco-élastique linéaire.
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On peut alors écrire la réponse (déformation) :

e)=oJ(t—-1) pour t<t<tp 2.74)

e)=oJt-1)+oxJ(t—1) pour (=t (2.75)

Dans l'exemple suivant, on voit que les déformations &(¢) = J(t — tj) o; s'additionnent comme

les contraintes o; . Cela donne :

e(t) = ¥ &)= Y I(t-t,)0, (2.76)
On pose la relation élémentaire :

de =dol(t-7) (2.77)

Pour connaitre la valeur de ¢, il faut prendre en compte 1’histoire de 7(¢), c’est-a-dire depuis

]-c0,%], on procede a une intégration :

e(t) —fJ(t—r)da(r)—fJ(t 7) 60(7:) (2.78)

N.B. En général, les bornes d’intégration correspondent au début de la combinaison de

sollicitations et a 1’instant # de la mesure.

On peut procéder de la méme maniere si la sollicitation est une déformation et 1’on trouve :

0
o(t) = fR(t -0 (2.79)
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273 Cas spéciaux du principe de superposition de Boltzmann
Rampe de sollicitation

Prenons une mise en charge a vitesse constante o dans un intervalle de temps [t1, ]. Le

graphique de la Figure 2.21 nous montre un tel cas.

0)

A

»
>

ty t t

Figure 2.21. Sollicitation a vitesse de charge constante dans un intervalle de temps.

D’apres le principe de superposition de Boltzmann, on a la relation suivante :

(2.80)

Il nous faut, tout d’abord, déterminer la vitesse de charge et résoudre I’intégrale pour tous les

intervalles de temps (]-oo, #1], [#1, £2], [£2, o0]).

Dans I’intervalle J-o0,#1] :

elt)=]_J(t-7)-0-dz=0 2.81)

Dans I’intervalle [#, 2] :

g(t):J_t;](t‘f)'o'd”E/(t_f)'d'dﬁLtl](t_f)'d'df (2.82)
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Dans I’intervalle [¢,, oo :

=) odes e dos o) oo eshoar

Il suffit, maintenant, de résoudre 1’intégrale pour un temps donné.

Si la sollicitation est en déformation, on peut procéder de la méme maniere pour obtenir la

contrainte sur tous les intervalles de temps.
Sollicitation échelon

Prenons une mise en charge que 1’on appelle échelon. Le graphique de la Figure 2.22 nous

montre ce genre de sollicitation.

€9

Y-

4

Figure 2.22. Sollicitation en échelon.

D’apres le principe de superposition de Boltzmann, on a la relation suivante :

O'(t)zj;R(t—r)-é-dr (2.84)

Le probleme de la résolution de cette intégrale réside dans la détermination de la vitesse de

sollicitation &€ qui est définie comme :
e=w si t=t1 et e€=0 si t(#¢ (2.85)

Toutefois, il existe une fonction mathématique qui possede cette propriété, il s’agit de la

fonction de Dirac o :
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o(rt—t)=0w si 7=t et O(r—t)=0 ailleurs (2.86)
De plus, cette fonction a les propriétés suivantes :

+ t
t

}6(r—t1)dr=f6(r—tl)dr=l et J5(T—ZI)R(II—T)dsz(t—tl) (2.87)

tl_ 4
Il existe une équivalence entre ¢ et la fonction de Dirac :
£ =&d8(z-t) (2.88)

Comme dans le cas précédent, on décompose 1’axe du temps en intervalle (J-co, [, ], oo[), ce

qui donne :

Dans I’intervalle J-o0, 1] :

O'(t)=j;R(t—r)-O-dr=O (2.89)

Dans I’intervalle ]t1, oof :

O'(t)=J.i:R(t—T)-O-dT+J.:HR(t—T)-805(T—t1)-d7+.|‘: R(t—r)-O-drzgoR(t—tl) (290

Si la sollicitation est en contrainte, on peut procéder de la méme maniere pour obtenir la

déformation sur tous les intervalles de temps.

28 INFORMATIONS COMPLEMENTAIRES

28.1 Transformée de Laplace

Cet outil mathématique va faciliter certains calculs. On rappelle qu’il permet de trouver les

solutions d’équation différentielles. Nous 1’avons déja utilisé au paragraphe 2.6. On définit la

transformée de Laplace comme :
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L[f(t)] = F(s) = fe‘“f(t)dt (291)

En considérant, les conditions d’existence suivantes :

- f(¢) continue par partie pour >0

- f(#) d’ordre exponentiel' quand ¢ — oo

La transformée d’une dérivée est :

LIf(O)] = [ef(t)dt = [e"”f(t)]: +s [ e ft)dt = sL[f(t)] - f(0) (2.92)

La transformée inverse est définie telle que :
si LIf(D)] = f(s) = (t) =L"[{(s)] (2.93)

L’intégrale de convolution est définie comme étant :

£t * g(t) = [ (gt -1)dv
0 (2.94)

Ainsi :
LIf(t) * g(0)] = £(s)g(s) (2.95)

Cette derniere relation peut, par exemple, s’appliquer au modele standard.

Il existe de nombreuses tables donnant les valeurs des transformées de Laplace, par exemple :
Abramowitz and Stegun, Handbook of Mathematical Functions, Dover Publications, 1972,

New-York.

" une fonction est dite d'ordre exponentiel s'il existe des constantes réelles T >0, a >0 et K > 0 telles que abs(f(t)) < Kexp{at}
pour tout t >T
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2.8.2 Relations entre R(f) et J(0

On a vu précédemment que généralement, R(7) et J(¢) se décomposent en deux parties
distinctes : une partie €élastique (indépendante du temps) et une partie visqueuse (dépendante

du temps). De facon générale, on peut écrire ces deux fonctions de la maniere suivante :

R(t) = E, + Ry (1)

It) = EL +J,(0) (2.96)

R

Ri(¥) et Ji{f) peuvent avoir les formes exponentielles ou linéaires comme celles présentées au
début du chapitre, mais elles peuvent également prendre d’autres formes comme, par

exemple, a + bt" (voir Chapitre 4).

Il est important de savoir si la partie élastique est comprise dans une fonction de relaxation
donnée pour résoudre correctement des superpositions de contrainte ou de déformation selon

le principe de Boltzmann.

Par ailleurs, nous avons vu que la fonction de complaisance de fluage et la fonction de

relaxation étaient reliées par :

R®J@®) =1 ou J(@) = $ (297)

Cette approximation donne une erreur typique de :

- environ 15% pour la composante fonction de temps

- < 1% quand les déformations élastiques sont prises en compte

On peut trouver la solution exacte en utilisant 1’intégrale de convolution (paragraphe 2.8.1).
Soient deux fonctions f(7) et g(r). On définit h(7) tel que les transformées de Laplace soient

reliées par :
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h(s) = f(s)g(s) (2.98)

Or, on a par définition :

f(s)g(s) =LIf(t) *g(®)] =L i f(og(t - r)dr} (2.99)
Par conséquent :

L™'Th(s)] = {tf(r)g(t - 1)t (2.100)
Pour les modules, on a :

I(s) = Ze‘S‘J(t)dt et R(s) = Ze‘“R(t)dt (2.101)

La transformée du principe de superposition de Boltzmann donne, sachant que :

e(t) = }J(t —r)cll—?dr =o(1) * I(t) (2.102)

et
t de
olt)]=| Rlt—7 ) —-dr=€(t|*R[t
)= [, Rle-o) -z =efe)o e .

Alors :

E=j(s)s5} e _1[1]

= L J)RG)=L" | (2.104)

o =R(s)s¢ S

Par ailleurs, d’apres la table des transformées des fonctions :
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L[t] = iz (2.105)
s

On aboutit donc au résultat :

JI@RE-1)d7 = [R@I(E-7)dT = t (2.106)

On voit qu’en connaissant une des fonctions, on peut déterminer 1’autre.
283 Exemple

Soit le module relaxant du polychlorure de vinyle : R(f) = 22'800 ¢ »»> [MPa] avec ¢ en [s].

Déterminez la fonction de complaisance.

On voit que le module relaxant est de la forme A¢'. Dans les tables (voir référence a la fin du

paragraphe 2.8.1, page 1022), on trouve :

Fit) =t =  L[F@®]=F(s) =&3()

S

(2.107)

La fonction I" est la fonction factorielle ou Gamma d’Euler, dont une des propriétés est :

I'(1 = n)[(1 + n) = S20M) (2.108)
On calcule la transformée de R(?) :
_ (- 0305
L[R()] = R(s) = 22800—=93%) (2.109)
o

Avec la relation J(s)R(s) = %z trouvée au paragraphe 2.8.2,ona :
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Js) = —=— = - - S (2.110)
s’R(s)  22800I(1-0.305)s>  22800T(1-0.305)s™*"
d’ou :
Jo = L'[Js)]- 22800F(11 ~0.305) L[ys“m] @11
or,
s‘+(1)'3°5 - r(1rf1);853)(s)‘5+3’~3°5 (2112
donc :
L_l[s“i-”sj “Ta iO-(S)O;oa @113
On trouve :
It = e _ 0305t (2.114)
22800T(1-0.305)['(1 +0.305)  22800sin(0.3057)
Et finalement :
J(t) = 37.450-107°¢"" 2.115)

On remarque que J(1)R(¢) = 0.8539 # 1.
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29 RESUME DES FORMULES PRINCIPALES

REMARQUE IMPORTANTE

s’additionnent alors que la contrainte est la méme pour chaque élément.

s’additionnent alors que la déformation est la méme pour chaque élément.

- lors de la pose d’éléments en série, les déformations de chacun d’eux

- lors de la pose d’éléments en parallele, les contraintes de chacun d’eux

291 Equation générale du modele de Maxwell
de 1ldo 1
—=——+—0
dt Edt n

Fluage (Maxwell)

It =E" (1 + ) avec T, =
o E
Relaxation (Maxwell)
Qd—a+ =t,—+0 =0 avec Tg=ﬂ
E dt E

(2.116)

(2.117)

(2.118)

(2.119)

(2.120)
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292 Equation générale du modéele de Kelvin (Voigt)
E de,
o= EEFIT (2.121)
Fluage (Kelvin)
o t
g(t)=—2 l—eXp(——\ =Jt) 0, avec T = 1
Relaxation (Kelvin)
o(1) = Ee, (2.123)
Recouvrance de la déformation (Kelvin)
t
e(t) = ¢, exp(— —) pour t>t (2.124)
TO'
ol 7, est le temps de retard qui vaut n/E .
293 Equation générale du modéele standard linéaire
(SLSM : Standard Linear Solid Model)
0+71,0=F,e+E1 (2.125)
EE
ou: pp— [s] et E, =—"—1 [Pa] (2.126)

‘ E+E, " E+E,



2.34 Modeles mécaniques

Fluage (SLSM)
t
g(t)=—+—]|1 expL——)
I II TO
—
EII
1 1 t
JO)=—+—|1- expL —)
E E, T

Module non relaxé (r=0) : E,= E=1/J,

Module relaxé (= ) : E, =
E + E;

Relaxation (SLSM)

Té‘
E + E;
Module non relaxé (t=0) : E, = E,

EE, )

Module relaxé (t=®) : E, = (
E +E;

Recouvrance de Ia déformation

&(t) —ﬁex (—i)[ex (t—l)—l]
=7 p Tg{ pfa J pour >t

I

EIEII —

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)
(2.136)

(2.137)

(2.138)
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294

Remarque concernant R(?) et J(?)

R(t) = E; + Ry (t)

10 = —— + 3,0
E,

R

(2.139)
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3 ESSAIS HARMONIQUES

En dehors des expériences de fluage et de relaxation, il existe, en viscoélasticité linéaire, un
autre type d’expérience qui présente un intérét fondamental et qui consiste a étudier le matériau
de facon oscillatoire, en lui imposant une contrainte (ou déformation) qui varie sinusoidalement
au cours du temps. La linéarité des équations entraine que la déformation (ou contrainte) est

également sinusoidale et de méme fréquence.
3.1 GENERALITES
On fixe un barreau d'essai dans la machine et on le sollicite en torsion avec :

- une masse libre (résonance)

- un moteur a une fréquence spécifique (oscillation forcée)

On obtient le comportement en fonction de la déformation et de la vitesse de sollicitation. Les

fréquences de vibration typiques sont données a la Figure 3.1.

vibrations
- forcées -
! | expériences de fluage
résonance : ! - ! et de relaxation >i
. des ondes I . vibrations! . I :
propagation : stationnaires : | libres : : : :
<> H
| d’onde | : [ | : [
-~ T |
' | o : | ! |
102 2 102 104 100
] ] ] A ] ] ] ] ] ] ]
Fréquence [Hz] —-e— : —  Temps [s]
] ] ] ] ] | ] ] il ] ]
100 104 102 1! 102
0.16 Hz

Figure 3.1. Les fréquences de vibration typiques avec leur phénomene.

La vitesse de sollicitation, d&/dt, exerce une influence importante sur la réponse mécanique d'un

matériau viscoélastique.
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32 SOLLICITATION OSCILLATOIRE D'UN MATERIAU

321 Matériau élastique

Lorsqu’on soumet un matériau purement élastique a un essai harmonique, la réponse est en

phase avec la sollicitation. Ce phénomene est décrit a la Figure 3.2.

o)

(t)

o(t)

y

wt

Figure 3.2. Sollicitation et réponse d’un matériau élastique a un essai harmonique.

On représente généralement la déformation et la contrainte en fonction du produit entre le temps
et la fréquence. Ce produit est un temps adimensionnel. Cette astuce permet d’obtenir une
courbe normalisée pour toutes les fréquences. En effet, lors d’essais a différentes fréquences
pour le méme matériau, on obtient une seule et méme courbe ; tandis que si on représentait la
sollicitation et la réponse en fonction du temps, on obtiendrait autant de courbes que de

fréquences testées. Les relations sont du type :

c=&sin(wt) et o= oovsin(wr) (3.1

I1 est important de noter que la sollicitation doit impérativement rester dans le domaine élastique

linéaire du matériau considéré, quelle que soit la nature de celui-ci. La zone élastique est

représentée a la Figure 3.3.
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zone
admissible

€

Figure 3.3. Représentation de la zone admissible de sollicitations pour ce genre d’essai.

322 Matériau visqueux (plastique)

Pour un matériau totalement visqueux, la sollicitation et la réponse sont déphasées d’un quart

de période. Leurs représentations sont illustrées a la Figure 3.4.

A &(t)

|
| —9()
| |
| |
| |
| |

Y

ot
| |
>

déphasage
d’un quart de
longueur d’onde

Figure 3.4. Sollicitation (¢) et réponse (o) d’un matériau anélastique a un essai harmonique.

Les relations sont pour une sollicitation en déformation :

c=asin(wt) et o=opsin(wt+mn/2) car o=ndgde (3.2)
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323 Matériau viscoélastique

Pour un matériau viscoélastique, la représentation de la sollicitation et de la réponse se trouvent
a la Figure 3.5. On s’apercoit que le déphasage n’a pas une valeur définie, mais dépend du
matériau et des conditions de 1’essai.

o) &0
|

' o(t)

Y

wt

/

>+—f=<<
déphasage 0

Figure 3.5. Sollicitation (¢) et réponse (o) d’un matériau viscoélastique a un essai harmonique.

Comme ¢ a un décalage de phase quelconque par rapport a o, on a les relations suivantes (on

considere le cas ou la sollicitation est en déformation) :

sollicitation : € = &;sin(w t)

réponse : 0 =0, sinflwt +9) 3.3)

ou O est I’angle de perte ou déphasage. En utilisant des relations trigonométriques, on obtient :

sollicitation : € = g,sin(w t)

réponse : O = 0, sin(w t)cos(d) + g, cos(w t)sin(d) (34)

ou I’amplitude en phase avec la déformation &£(¢) est 0, cos(d) et I’amplitude en opposition de

phase avec la déformation &(¢) est 0, sin(d).
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33 DEFINITIONS

Trois définitions sont nécessaires :

- Le module de conservation ou module de stockage correspond a I’énergie stockée dans
I’échantillon a cause de la contrainte appliquée, c’est la composante élastique des

matériaux. Il est défini comme :

E' = Zcos(8) (3.5)

€
- Le module de perte ou module de la friction interne correspond a la dissipation d’énergie,

c’est la composante visqueuse des matériaux. Il est défini comme :

E" = Lo6in(s) (3.6)

€

- Le facteur de perte est défini par :

"

tan(d) = % 3.7

ou o est le déphasage. On trouve des relations du type :

sollicitation : € = &,sin(w t)

réponse : 0 = g E'sin(w t) + £,E" cos(w t) (3.8)
Quelques valeurs typiques pour un polymere solide :

E' =10’ [Pa]

E" =10’ [Pa]

. 8=001

- (polymere fondu: 6 = 40°-80°)
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34 COMPORTEMENT DYNAMIQUE POUR LE MODELE STANDARD LINEAIRE

Nous considérons deux sollicitations possibles, soit une contrainte harmonique, soit une

déformation harmonique.

34.1 Contrainte sinusoidale

On considere une variation sinusoidale de la contrainte appliquée :

o = opsin(wt) et O =woocos(wt) (3.9)

En utilisant I’équation générale sous forme différentielle du SLSM donnée au paragraphe 2.6.1 :

—— A log+—o0 (3.10)

En substituant les valeurs de oet de ¢ dans I’équation précédente, on aboutit a :

de ¢
—+—=0,
dt T,

E+E ).
St sin(w t)+ 0, 2cos(a) t) (3.11)
EIEHTO EI

ol 7, est le temps de retard comme défini au paragraphe 2.3.1, c’est-a-dire :

o

n
r =L (3.12)
EII

La solution particuliere est de la forme :
& =Acos(wt) + Bsin(wt) (3.13)
avec comme dérivée :

€ =—Aw sin(wt) + Bow cos(w ) (3.14)
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En remplagant et ¢ par les expressions ci-dessus dans 1’équation (3.11),on a:

(Bw + ﬁ) cos(w t)+ (E - Aa)) sin(w t) = O, (M) sin(w t)+ 0, %cos(a) t) (3.15)
T 1EnTs I

o o

Par comparaison entre les termes en sinus et en cosinus, on a un systeme de deux équations a

deux inconnues :

_aw+ B o Bt En (3.162)
ta EIEIITU

A Bw-0,2 (3.16b)

ro EI

En résolvant ce systeme, on trouve que les constantes A et B valent :

A=_()'OL(272 et B=GO
E,1+w't))

1 1
. (3.17)
E, Eu(l+w21raz)}

Par ailleurs la déformation peut étre exprimée par :

e=0, sin(a)t)cos(é)—oo cos(a)t)sin(S):J(A2 +Bz)sin(a)t—5): €, sin(a)t—é) (3.18)

ol O est le déphasage et le facteur de perte correspondant vaut :

sin() _A Ewrt, _ (3.19)
cos(0) B EI+EH(1+a) T, )

tan(d) =

Le terme Bsin(w t) représente le comportement en phase et Acos(w t) celui hors phase. Par

conséquent, on a la complaisance de stockage :

(3.20)
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et la complaisance de perte :

On obtient ainsi I’équation particuliere pour la déformation :
8=Go[j'sin(a)t)—]"cos(wt)}
342 Déformation sinusoidale
La variation sinusoidale de la déformation appliquée est :
&= gsin(wt) et &= we cos(wt)
En remplacant ces expressions dans 1’équation générale du SLSM :
o+T10=E¢e+ET¢E
on obtient :
0+T,0=FE¢ sin(wt)+ ET e wcos(ot)
On cherche une solution de la forme :
o=¢cpE'sin(wt)+ & E" cos(wt) et 0=¢gpE' wcos(wt) - E" wsin(ot)
En remplacant dans (3.2), et en séparant les termes en cos et en sin, on a :

ER=E'—‘C€E"(D et TE0w=E"+T0E'

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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En résolvant pour E 'et E ", on aboutit aux modules en phase et hors phase suivants :

, EE E ot}
E=( y ) It T (3.28)
E +E, E 1+wT, :
P O | 2
k E + EH} 1+ w’t’ (3.29)

Ces deux fonctions sont schématiquement représentées a la Figure 3.6. On voit que E'" passe
par un maximum pour une vitesse angulaire qui correspond a I’inverse du temps de relaxation

du matériau. On obtient aussi le facteur de perte :

T&'

tan(8) = ¢ . (3.30)
w’t,” + —"(1 + wztsz))
T
E,E”
E 2
EiEn . 2 (Ei+Eny
Ei+En : pe 00
P ~
Nl w=2 xf
0.)=1/Tl.

Figure 3.6. Modules de stockage E’ et de perte E”’ pour le modele SLSM en fonction de la fréquence.
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35 ENERGIE DISSIPEE PAR CYCLE ET PAR UNITE DE VOLUME

Par définition, I’énergie dissipée est la surface représentée a la Figure 3.7, elle est en fait décrite

par une hystérese.

Figure 3.7. Représentation graphique de 1’énergie dissipée sur un cycle.

L’énergie dissipée sur un cycle est :

27,
Je
AW=[ode= f o S-dr (331)

On a les relations suivantes pour une sollicitation en déformation :

. de
sollicitation : € = g;sin(wt) = i cos(w t) (3.32)

réponse : O = £,E'sin(w t) + £, E" cos(w t) (3.33)

On peut maintenant calculer 1’énergie dissipée sur un cycle :

7o
AW = we,’ f(E’sin(w t)cos(wt) + E"cos’(w t))dt
0 (3.34)
_ "2
AW =rE"g; (335)
De maniere analogue, on trouve le résultat pour une sollicitation en contrainte :
_ n__2
AW=xn]"o, (3.36)

On constate que seules les composantes hors phase d’un matériau viscoélastique affectent

’énergie dissipée. L unité de cette énergie est le [J/m?].
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3.6 REPRESENTATION COMPLEXE
Comme on a des modules en phase et hors phase, on peut utiliser la théorie des nombres
complexes. Pour cela, il faut exprimer la sollicitation et la réponse en nombres complexes. Pour

une sollicitation en déformation, cela donne :

sollicitation : = g exp(imt)

réponse : o= op expli(wt+ 0)] (3.37)

A partir de 13, on peut définir deux modules apparents, le module complexe E” et la compliance

complexe J* :
E =g=&exp{ia)t+i5—ia)t}:iexp{iS}:&(cos(é)ﬂsin(é)):E'+iE"
£ g g, g, (338)
r :gzz_Zexp{ia)t—ia)t—ﬁ}:2—‘;exp{—i5}=z—Z(cos(S)—isin(é‘))=]'—1]" (3.39)
Ici, le déphasage o est défini comme étant :
tan(é‘):E—'::]—':
EJ (3.40)

o r 5 Re
Im E

Figure 3.8. Représentation graphique dans I’espace complexe des différents modules et du déphasage.
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Entre ces deux modules complexes (E* et J), on a la relation :

J (iw) = 1/(E (i) (341)

Attention, les définitions des modules complexes sont différentes si une sollicitation en

contrainte est imposée :

sollicitation : o = opexp{iw t}

réponse : £ = & exp{i(wt—0)} (342)

En effet, on a maintenant :

E'=E -iE” (3.43)
J =T+ (3.44)
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3.7. RESUME DES FORMULES IMPORTANTES
3.7.1 Contrainte sinusoidale
in(d) A E
Facteur de perte : tan(d) = Sin(0) _A__ 2% (3.45)

cos(d) B E+E, (1 + w2r(,2)

Complaisance de stockage : “E T E, ‘1_,_ w’T, , (3.46)
JH mG
Complaisance de perte : - E (1 + ol 2j (347)
I o

3.7.2 Déformation sinusoidale
Facteur de perte : tan(d) = (3.48)
a) ’T, +— 1+ w’T, ))
El ={ EIEH \ 1+£ ('OZTEZ
Module de stockage : k E +E, } E, 1+w0t> (3.49)
n ( E'I2 \ ms

Module de perte : - L E +E, ) 1+ okt 2 (3.50)
3.73 Energie dissipée par cycle et par unité de volume

Sollicitation en déformation AW =7E "€’ (3.51)

Sollicitation en contrainte AW =7]"0? (3.52)
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4 MODELES DE RELAXATION ET BASES PHYSIQUES

La représentation intégrale pour un matériau viscoélastique linéaire a I’aide de la superposition

de Boltzmann est, pour le fluage :
‘ d
e(r) = [I(t -0 dr 4.1
—o dt

sachant que :

J(1) =EL+JV(t) 4.2)

R

on a donc :

Ey d 43)

De méme pour la relaxation :

o(1)=e(0)E,+ [ & (1-7) ar "

Les fonctions au cceur de I’intégrale (‘kernel functions'), Ji(t) et Ri(f) sont des fonctions de
mémoire reliant 1’évolution des contraintes et des déformations. Différentes expressions,

représentant des phénomenes physiques distincts, sont couramment utilisées.

Les modeles de relaxation sont obtenus par un essai de relaxation comme décrit au paragraphe
1.4.2, dans lequel une déformation constante & est subitement appliquée a ¢ = 0. On a défini

alors la fonction de relaxation Ry(t), aussi appelée module relaxant :

R(t):M et o(t)=¢)(Ex+R,(1))
(4.5)



4.2 Modele de relaxation et bases physiques

4.1 MODELE DE MAXWELL

Prenons I’exemple du modele mécanique simple de Maxwell (décrit a la Figure 2.8) dans les
conditions de relaxation, c’est a dire pour € =0. La condition pour un modeéle linéaire (modele

de Maxwell) est :

O=-—0 ol rzestletemps de relaxation (4.6)

Le module relaxant évolue dans le temps comme I’illustre la Figure 4.1.

RO

T<T
EO 1~

log t
o

Figure 4.1. Evolution du module relaxant d’apres le modele linéaire.

Comme au Chapitre 2, on trouve la solution suivante :

t
o=0, exp(— —)
TE

4.7)

R (t) = ﬁexp(— ri) = E, exp( —Ti) 4.8)

80 € €

- Caractéristiques : temps de relaxation unique, décroissance exponentielle, relaxation de
o en trois décades.
- Validité : surestime la relaxation.

- Parametre : 7 déplace la courbe par rapport a I’axe du temps.
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4.3 MODELE DE MAXWELL GENERALISE

Ce modele permet de décrire le comportement d’un matériau ayant une multitude de temps de

relaxation discrets. Le modele est représenté a la Figure 4.2.

Figure 4.2. Représentation schématique du modele de Maxwell généralisé.

Le modele est décrit par une série de Prony :

R, (t)= EOZCi exp{—%}= ZE,. exp{—%} ol 0<7,= % <oo
i=0 B i=0 i i

1

49)

Cette représentation peut €tre utilisée pour n’importe quelle courbe de relaxation et converge
rapidement avec un terme par décade de temps. Les coefficients C; peuvent tre vus comme les
composantes d’un spectre discret de relaxation. Ce modele est pratique pour décrire des courbes

de relaxation ou les données sont limitées dans le temps.

- Caractéristiques : série de Prony, spectre discret de 7., un élément par décade.

- Validité : c’est un modele empirique (régression).

On a représenté le module relaxant a la Figure 4.3.
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Rv(t) “Rv(t) ARv(t)
T + w + N B
log t log t logt
ARV(®)
Tl
= ©
(%
log t

Figure 4.3. Construction graphique de 1’évolution du module relaxant d’apreés le modele de Maxwell généralisé.
On additionne les différents modules relaxants correspondant aux différents temps de relaxation (il y a un temps
de relaxation par éléments).

43 MODELE DE KELVIN (VOIGT) GENERALISE

Ce modele est construit sur la méme base que le modele de Maxwell généralisé. Il s’agit du
modele de Kelvin mis en série, puis on rajoute un ressort en série. On trouve alors une fonction

de complaisance qui est :

1 t n.
J t)= —|1-expy—— ou T =—*
14 ( ) Zl Ei p To- o, Ei
. ' (4.10)
44 MODELE COOPERATIF KWW (EXPONENTIEL ALLONGE)

Le modele proposé initialement par Kohlrausch en 1854 et repris plus tard par Williams et Watt
en 1970 représente la relaxation des contraintes dues au mouvement coopératif (interdépendant,
coordonné) d’unités primitives ayant chacune un temps caractéristique de relaxation donné par

le modele linéaire. Ce modele est décrit par une relation exponentielle incluant un exposant £:

‘ (4.11)
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On obtient le module relaxant, représenté a la Figure 4.4 :

(o) t t
RV (t) —_0 EXpy— —T = EO expy— _T
(4.12)

Figure 4.4. Evolution du module relaxant d’apreés le modele KWW.

Il y a deux cas limites. Le premier ou £ vaut 1 correspond alors au modele linéaire de Maxwell.

Le deuxieme ou £ vaut O correspond au modele élastique.

- Caractéristiques : exposant d'étirement /3, relaxation coopérative d'un grand nombre de
processus.

- Validité : bon pour des temps moyens, peu précis pour des temps courts, et surestime
aux temps longs.

- Parametres : 7, déplace la courbe par rapport a I’axe du temps, # modifie la forme la

courbe en changeant sa pente.

4.5 SPECTRE DE TEMPS DE RELAXATION (STR)

Les modeles présentés précédemment ne décrivent pas tres bien le comportement de la structure
d’un polymere. La difficulté vient de I'utilisation de plusieurs modeles possédant plusieurs
temps de relaxation. Cependant, on a divers modeles a disposition, comme celui de Maxwell
généralisé (paragraphe 4.2) qui posseéde plusieurs temps de relaxation (un pour chaque
élément). On définit le spectre de temps de relaxation comme représentant la distribution des

temps de relaxation, caractérisée par une densité de probabilités.



4.6 Modele de relaxation et bases physiques

Appliquée au modele de Maxwell généralisé, on a une fonction de relaxation :

R() = E, + SE.exp
i=0

—i) (4.13)

fa

Un exemple de spectre de relaxation avec les valeurs des modules est reporté a la Figure 4.5.

T, T, Te3 log T;

Figure 4.5. Exemple de spectre discret de temps de relaxation en fonction du module.

On note que pour un grand nombre d'éléments (si » — infini) on obtient un spectre continu

dénommé H(7) et décrit a la Figure 4.6.

A H(ze)

Figure 4.6. Exemple de spectre continu de temps de relaxation H(zg) en fonction du module.

On peut écrire la fonction de relaxation et de complaisance au fluage (obtenues en utilisant un

modele de Kelvin généralisé) en différenciant la partie élastique a la partie visqueuse :

€

relaxation : R(t) = E, +f H(Ts)exp(— )dr (4.14)
0

t
TS

fluage : J(t)=J, + OfOL(ra)
0

l—exp(—f)ld% (4.15)
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H(z¢) est défini comme étant le spectre de relaxation et L(75) comme le spectre de retard. H(z¢)

et L(7o) refleétent les mécanismes physiques et chimiques du comportement rhéologique. Les

composantes aux temps courts indiquent des phénomenes localisés, tandis que les temps de

relaxation longs indiquent des mécanismes impliquant des domaines plus étendus.
4.6 CALCUL DU SPECTRE DE TEMPS DE RELAXATION

Il existe des méthodes permettant d’avoir acces aux spectres de temps de relaxation.
Approximation d’Alfred

(différentiation de R(r)=E,+ | H(z,)exp{~t/,}dz,)

_ dR(t)
dIn(t)

H(t) ~ (4.16)

t=17

Approximation de Ferry & Williams

dlogR(t)

H(7) = -M(m)R(t) dlogt

4.17)

t=T

. . . dlogH
,avec I' qui est une fonction tabulée et m est la pente

M .
U M) =1 ) dlogt,

Approximation de Schwarzl & Staverman

_dR(©® _dRQ
~ dint  d(Int)?|

H(z,) (4.18)

t=2t,

L’approximation d’Alfred donne généralement une bonne valeur de référence.



4.8 Modele de relaxation et bases physiques

4.7 MODELES PHYSIQUES THERMIQUEMENT ACTIVES
4.7.1  Modele exponentiel

Ce modele représente le passage d’un état 1 a un état 2 de plus basse énergie avec une énergie
d’activation E, = -v*o ou v* représente un volume d’activation, et o est la contrainte. Pour les

polymeres, on a :

KT _ 0.10, (4.19)
V *

avec k la constante de Boltzmann et 7 la température absolue (en Kelvin). L'énergie plus basse

correspond a une contrainte plus faible. Pour ce modele, on pose :

. V*O'
o= —ACXP(E) (4.20)

ol A est une constante.
On a un module relaxant qui est :

o kT
R(1)=E,+R,(t)=————In{t—7,
oV g Vg ! J

(4.21)

Le module relaxant a été reporté sur la Figure 4.7 et une représentation du mécanisme sur la

Figure 4.8.

\ Ry (0

logt

Figure 4.7. Evolution du module relaxant d’apres le modele exponentiel.
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Figure 4.8. Représentation du mécanisme physique.

472 Modele exponentiel avec ‘réaction’ dans les deux sens

On considere le méme passage d’énergie que dans le cas du modele exponentiel. Cependant, la

probabilité de la ‘réaction’ 2 — 1 est aussi prise en compte. Ce phénomene est décrit a la Figure

49.

Figure 4.9. Représentation du mécanisme physique en considérant la “réaction” dans les deux sens.

La solution, Iégerement différente, est donnée par :

(v¥o

& = ~ A, sinh{ = ) (422)

Car sinhx = (e* — e ¥)/2. On voit que la contrainte est de la forme :

oxlIn(t-7,)-In(t+7,) (4.23)



4.10 Modele de relaxation et bases physiques

La nature des composantes aux temps courts ou longs dont il est question, sont schématisés a

la figure 4.10.

polymere linéaire rotation de groupe mouvement de réarrangement
latéraux manivelle de de chaine
segment locaux

A

Figure 4.10. Mouvements des chaines de polymere en rapport avec le temps nécessaire pour les effectuer.
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5 EQUIVALENCE TEMPS - TEMPERATURE

5.1 COURBE MAITRESSE ET COEFFICIENT DE TRANSLATION ap

On a constaté qu’il existe une équivalence entre la durée d’une sollicitation et la température
d’un matériau. Par exemple, le comportement d’un polymere a température élevée pour des
sollicitations rapides correspond au comportement du méme matériau a basse température pour
des grands temps de sollicitation. Ainsi, la Figure 5.1 montre que la relaxation d’un polymere
viscoélastique a une température donnée peut étre superposée a la réponse obtenue a une autre

température moyennant un décalage selon 1’axe des temps.

log (R(1) 4 T2

log (temps)

Figure 5.1. Allure des modules de relaxation en fonction du temps pour différentes températures (T1>T2>T3).

La distance de décalage est une fonction de la température décrite par un coefficient de

translation (shift factor) ar. On peut dés lors construire une courbe maitresse ou courbe pilote

comme montré¢ a la Figure 5.2.

R(t) A

T <T<Tp<T;

courbe maitresse

Durée typique
d’un essai

log(t,) log(t,)

Figure 5.2. Illustration du principe de superposition temps-température. Construction de la courbe maitresse (en
gras) au moyen de mesures effectuées a différentes températures (traits minces).
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On utilise le facteur de translation pour passer du comportement a un temps donné et une
température de référence, a celui a un autre temps pour une autre température, par la formule

suivante :

R, T)=R(t/a;,T,,) (5.1)
Pratiquement, on obtient les relations suivantes :

log{a, (T, > T, )} = logr, ~logt,,, =log{1, /1, } et & (1, >T, )=/, (5.2)

Le facteur de translation est donc le temps requis pour obtenir une certaine réponse du matériau
a une température 7>, divisé par le temps requis pour obtenir la méme réponse a la température
de référence. On a aussi :

a,(Ty =T,) = a,(T, =T,)a,(T, =T,) (53)
La variation de ar est décrite schématiquement a la Figure 5.3, en fonction de 1/7. Il faut noter
que si la température T est plus grande que Trer, comme a la Figure 5.2, alors R(7T) sera plus

faible, donc ar sera inférieur a 1, et donc Log(ar) sera négatif.

Log(ay)
r

1/Tmi
/ 1T

Figure 5.3. Variation de ar en fonction de la température.

Différentes relations ont été trouvées pour exprimer la variation de ar avec la température. Les
plus utilisées sont celle d'Arrhenius, et celle de William, Landel et Ferry. Ces équations sont

présentées dans les paragraphes suivants.
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52 RELATION D’ ARRHENIUS

La loi d’ Arrhenius (introduite en 1889 par le chimiste Suédois du méme nom) est utilisée dans
la cadre de la rhéologie, pour des conditions €loignées de la température de transition vitreuse
Tg. La viscosité et la viscoélasticité d’un matériau résultent de sa mobilité moléculaire et/ou de
la mobilité de défauts internes. Il s'agit de phénomenes de transport a tres petite échelle, dans
lesquels une entité change de position dans I’espace. Ces mouvements sont gouvernés par des
facteurs tels que la probabilité qu’une place soit disponible, 1’énergie requise pour passer d’un
¢tat a un autre et la probabilité¢ pour que 1I’événement ait lieu. Ces facteurs sont affectés par la
température qui régit le “débit”. Le débit est la caractéristique temporelle des phénomenes. 11 y
a une équivalence entre le temps et la température dans la représentation du comportement du

matériau :

k(T):Aexp{—g%}

(5.4)

ou k est une propriété temporelle (i.e., un taux ou cinétique de réaction) en [s'], 4 un facteur
de fréquence, R la constante de Boltzmann et 7' la température en [K] et E., I’énergie
d’activation. Ainsi, I’énergie d’activation étant généralement positive, quand 7 augmente, la
propriété k augmente ¢galement et le temps correspondant diminue. La loi d’Arrhenius est
utilisée pour décrire le comportement en température de nombreuses propriétés dont les

suivantes.

- Phénomene de transport de base : la diffusion, avec le coefficient D (en [cm?/s])

D = —Aexp(k—QT> (5.5)

- Par analogie, la relaxation de contrainte peut étre décrite comme une “diffusion” d’état

de contrainte :

o= —Aexp(%) (5.6)
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- La viscosité 7 est par analogie la réciproque de la fluidité :

LU
- = Aexp\ T) 5.7

- Le temps de relaxation 7 :

1 ( B

= = Aex _—) 5.8

T p\ T (58)
53 RELATION ENTRE LA TEMPERATURE ET LA MOBILITE MOLECULAIRE

La viscosité 7 et le temps de relaxation 7 sont des mesures de la mobilité moléculaire. Ils
dépendent par conséquent de la diffusion des molécules ou des groupes de molécules, et les
mécanismes régissant 77 et 7 sont liés. Soit la viscosité dont la variation avec la température est

caractérisée par :
B
= Inn=-A +? (5.9)

Ceci est valable pour n’importe quelle température, et on a :

B
Inn, 7" Inn, - —=-A"= const

X T, (5.9

On aboutit a une relation du type Arrhenius représentée a la Figure 5.4 :

o1 1Y E(1 1
S B R A B (5.10)

La translation ar peut aussi s’exprimer comme un ratio entre le temps d’écoulement a une
certaine température, par rapport au temps d’écoulement pour atteindre le méme résultat a la

température de référence :
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_ @D
" N(T.y)

ou 10gar=log(7;/é12)) (5.11)

On peut donc aussi écrire que :

IR exp {%(% - )} =ar (5.12)

N(Tref) B Trer

Cette relation s’applique aux métaux, céramiques, polymeres, verres, ...

Figure 5.4. Représentation graphique d’une relation du type d’ Arrhenius pour la viscosité.

54 L’EQUATION WLF ET THEORIE DU VOLUME LIBRE
Dans les conditions proches de la transition vitreuse Ty la loi d’ Arrhenius n’est plus en mesure
de décrire le comportement visqueux. En 1955 Williams, Landel et Ferry ont dérivé une

¢quation appelée WLF reposant sur celle de Doolittle (1951), qui prend comme principe de

base que la mobilité moléculaire est une fonction du volume libre :
n= de’ (5.13)

ou f'est la fraction de volume libre et a’ et b’ sont des constantes. Aux températures 71 et 7>,

on a la relation (trouvée empiriquement a partir de données sur la paraffine) :

m_ exp(br(i_l)) (5.14)



5.6 Equivalence temps - température (t-7)

Il faut trouver une expression pour le volume libre. La théorie du volume libre est une
description de la structure d’un matériau amorphe comme un verre inorganique ou un polymere.
Cette théorie est fondée sur le fait que les molécules n’occupent pas tout le volume a leur
disposition. Le volume libre est le volume inoccupé par les molécules, c’est-a-dire “l’espace
vide” entre celles-ci. A 1’état caoutchoutique (7' > Ty), ce volume est ¢levé. Plus la température
baisse, plus ce volume diminue. Ceci est vrai jusqu’a ce que la température atteigne un seuil
“critique” au-dela duquel le volume libre reste constant. Cette température correspond a Ty,
température de transition vitreuse. La Figure 5.5 représente le volume spécifique d’un verre,
somme du volume spécifique occupé par les molécules (droite du bas) et le volume a disposition

(droites du haut).

<

Volume spécifique
oQ

foay
-

—
=gl ——__

g Température

Figure 5.5. Variation du volume spécifique d’un verre (courbe supérieure) et de ses molécules (courbe inférieure)
et définition graphique du volume libre qui est la distance entre les deux courbes.

Le volume par unit¢ de masse occupé par les molécules augmente a cause de I’expansion
thermique due au mouvement brownien. Il faut faire attention a I’échelle verticale sur la Figure

5.5 qui est en [m?/kg], il s’agit de volume spécifique.

Le volume disponible par unité de masse est V =V + Vj, ou Vy est le volume spécifique occupé
par les molécules et Vyle volume spécifique libre. En utilisant les équations des droites, on

obtient la relation :

V.=V, +(T-T) (%} (5.15)
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5.7

Vy, est le volume libre a la température de la transition vitreuse. Pour 7 > Ty, la dérivée du

volume par rapport a la température par unité de masse vaut: Aa = (a1 - o). a1 et o, sont les

coefficients d’expansion thermique et sont représentés a la Figure 5.5.
On divise la relation obtenue par le volume disponible V :

RNEAA

Pl LG,

et on pose :

d’ou

f=1f, +(T-T)Aa pour T>T,

En posant que b’ vaut 1 et T;¢r vaut T, on trouve :

1 1
hl(,r’) _f—g(T_T‘;) N o (l) _2303fg( - é)
- Eio - f
n) S (r-t) ) —y(r-1)
Aa
Or
__n@
" n(Tréd
donc :
T-T
loglo(ar)=_ - g)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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Les valeurs des constantes ¢ et d sont pour 7, < T< Tz + 100 :

1 f
c=———=~1744 et d=-£=516 (5.22)
2.303f, Aa

Une meilleure approximation utilise: 7" = Ty + 50°C, ¢ = 8.9 et d = 102.

Cette équation s’applique aux polymeres, aux liquides organiques, ainsi qu'aux verres

inorganiques.

55 INFLUENCE DE LA PRESSION SUR LE COMPORTEMENT VISCOELASTIQUE

Une augmentation de la pression réduit le volume et donc la mobilité moléculaire (Figure 5.6).
Elle affecte le comportement viscoélastique du matériau. La dépendance est analogue a la

relation WLF :

Vip)

N

J/ Vo= const *
v V=V

A

initial

-

Figure 5.6. Une augmentation de la pression réduit le volume et donc la mobilité moléculaire.

e

loga, = 523
%—(p—po) ( )

ou p, représente une pression de référence et y représente la compression du volume libre :

x=-: (Z—Z)T (5.24)
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La compressibilité y est dépendante de la pression et de la température. Un accroissement de la
température augmente y, alors qu’un accroissement de pression diminue cette compressibilité.
Avec la pression, le volume spécifique diminue, comme le montre la Figure 5.7. Nous

reviendrons sur ce diagramme d’état au Chapitre 7 dans le cas des liquides.

<

Specific volume
-
e

T
Temperature

Figure 5.7. Représentation de la variation du volume spécifique en fonction de la température pour deux pressions
données.
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6 CLASSES DE LIQUIDES

L’introduction de nouveaux concepts a permis de caractériser le comportement des solides et
de les étudier. Pour les liquides, nous allons aussi avoir besoin de concepts permettant de les
définir selon leurs caractéristiques. Le parametre le plus important est la viscosité. Elle dépend
de la structure et de la composition du matériau étudié. L.’étude des liquides est importante, car
on trouve pratiquement toutes les classes de matériaux sous forme liquide, et c’est souvent sous

cette forme qu’on les met en ceuvre. En exemple, on peut citer :

- les métaux fondus,

- les céramiques fondues ou sous forme de suspensions,
- les polymeres fondus,

- le béton (qui n’a pas encore pris),

- la nourriture (margarine, mayonnaise, ketchup, ...),

- beaucoup d’autres (liquides biologiques, ...).

I1 faut cependant se souvenir que tous les matériaux, méme ceux qui sont apparemment solides,
fluent et donc s’écoulent. Les temps d’écoulement sont certes tres longs. La distinction entre

solide et liquide faite ici est donc arbitraire.
6.1 CLASSIFICATION ET MISE EN (EUVRE DES POLYMERES

Les classifications permettent en général de cerner un comportement. Il y a plusieurs criteres

de classements, comme par exemple la microstructure et la mise en ceuvre.
6.1.1 Structure
On distingue trois types de polymeres représentés a la Figure 6.1. La Figure 6.1a représente un

polymere linéaire, la Figure 6.1b un polymere ramifié et la Figure 6.1c un polymere réticulé

(réseaun).
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() (b) (©)

Figure 6.1. Représentation schématique des trois types de polymeres : (a) linéaire, (b) ramifié et (c) réticulé.

Par exemple, un ski est composé de plusieurs polymeres : la semelle est en PE (polyéthylene)
de trés haute masse moléculaire, avec des chaines linéaires composées d'environ 3 millions
d'unités répétitives. Sa viscosité est tres élevée. Le ceeur du ski peut étre en résine époxy (formé

par réticulation de monomeres) renforcée par des fibres de verre.

6.1.2 Mise en ceuvre

La mise en ceuvre des thermoplastiques suit un procédé classique, décrit a la Figure 6.2.

granulés produit . . - objets
ou fondu ou objet mis - plaques
> C > en forme = - films
poudres plastidié o
- profilés
chauffage refroidissement
plastification moulage

Figure 6.2. Représentation schématique du procédé classique de mise en ceuvre des thermoplastiques.

La mise en forme se fait suivant diverses méthodes. On peut citer notamment le moulage par
injection, ainsi que I’extrusion qui sont les moyens les plus utilisés pour les articles fabriqués
avec des polymeres thermoplastiques. L’avancée du front de solidification lors du moulage par

injection est décrite a la Figure 6.3.

Figure 6.3. Représentation schématique de I’avancée du front de solidification lors du moulage par injection.
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La Figure 6.4 montre la progression du front du fluide solidifié dans le moule. La progression
du front peut étre décrite par des équations mathématiques. Pour plus d’informations, on peut
se référer au polycopié Phénomenes de transfert (Hofmann, EPFL). On peut aussi consulter le
livre suivant : Karger-Kocis, Polypropylene structure, blends and composites, Chapman and

Hall, 1995, Cambridge, ainsi que le polycopié du cours de mise en ceuvre des polymeres.

fluide solidifié

]

entrée

profil de vitesses front du fluide avancant
d'écolement dans

le fluide fondu

Figure 6.4. Représentation schématique de la progression du front du fluide solidifié dans le moule.

6.2 CLASSIFICATION DES COURBES D'ECOULEMENT

L’écoulement d’un matériau fondu peut €tre caractérisé par une courbe d’écoulement qui
reporte la contrainte de cisaillement en fonction de la vitesse de cisaillement. I1 faut considérer

plusieurs types de fluides.

6.2.1 Fluides Newtoniens

Un fluide Newtonien suit un comportement simple, décrit par une loi proposée par Newton :

T= 1y (6.1)

ol la viscosité 7 est indépendante de la vitesse de cisaillement y. Ce comportement est

représenté a la Figure 6.5, avec 77, > 1. > .. Les viscosités représentent les pentes des droites.

M
Up)
N3

Y

Figure 6.5. Courbes d’écoulement (contrainte-taux de cisaillement) pour trois fluides newtoniens avec 7> 17> 7.
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On peut également écrire la relation sous la forme logarithmique :

logt=logn+logy (6.2)
La Figure 6.6 représente cette relation. L ordonnée a 1’origine vaut logz, la pente est unitaire.
Attention, la position des axes peut étre trompeuse. La représentation de la Figure 6.6 est une

courbe d’écoulement.

logt
Ny bl N3

log y

Figure 6.6. Représentation des courbes d’écoulement de la Figure 6.5 en logarithme.

L’eau et la résine époxy avant durcissement sont de parfaits exemples de liquides Newtoniens.
6.2.2 Fluides non-Newtoniens

On rappelle la loi introduite au Chapitre 1, valable pour un fluide non-Newtonien :

=)y (6.3)

ou la viscosité dépend de la vitesse de cisaillement. En dehors de cette relation générale, il
existe diverses lois qui modélisent plus ou moins correctement le comportement des fluides

non-Newtoniens. On utilise fréquemment la loi de puissance :

T= Kyn" (6.4)
logt =logk +nlogy (6.5)

La viscosité est décrite par les coefficients x et n. L unité de x dépend de la valeur de n. x est
plus communément appelé consistance, et n indice de la loi de puissance ou de indice de

pseudo-plasticité. D autres modeles de lois seront exposés en détail au Chapitre 7.
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Le comportement général d’un liquide est décrit a la Figure 6.7.

T | logt

(©) ©

log Y

J
L L

Figure 6.7. Courbes contrainte - taux de cisaillement pour (a)un fluide newtonien, (b)dilatant et
(c) pseudoplastique.

La courbe (a) représente un fluide Newtonien (n = 1), la courbe (b) décrit un fluide dilatant
(n>1) et la courbe (c) montre un fluide pseudoplastique (n < 1). Les ordonnées a 1’origine des
courbes log-log de la Figure 6.7 ont la valeur de logxk. Il est a noter que le terme rhéofluidifiant
est synonyme du terme pseudoplastique, et le terme rhéoépaississant, synonyme du terme

dilatant.

La plupart des thermoplastiques sont pseudoplastiques tandis que les suspensions de particules

a ’origine des céramiques peuvent étre dilatantes.
6.3 LA VISCOSITE

La viscosité dynamique (ou tout simplement viscosité) est le rapport d’une contrainte et d’une

vitesse de déformation :
ou 7 =§ (6.6)

En prenant I’exemple de la loi de puissance, on aboutit a une relation permettant de relier la

viscosité a la vitesse de cisaillement :
= E g (6.7)

Lorsque n vaut 1, le fluide est Newtonien et on peut remplacer x par 7. Cette relation est

représentée par la Figure 6.8, qui décrit des courbes de viscosités.
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log
A )

/\ o

log y

o

Figure 6.8. Courbes de viscosité pour (a) un fluide newtonien, (b) dilatant et (c) pseudoplastique.

Les droites a, b et ¢ de la Figure 6.8 décrivent les mémes matériaux, dans le méme ordre qu’a

la Figure 6.7.

64 COURBE DE VISCOSITE DES POLYMERES : CAS GENERAL

Dans les polymeres, une contrainte impose une orientation préférentielle des chaines, favorisée
par la présence d'enchevétrements. L'état d'orientation dépend de la vitesse a laquelle les

molécules peuvent s’enchevétrer.

Le temps d’enchevétrement est long = La structure reste orientée plus longtemps.

Le temps d’enchevétrement est court = La structure retrouve rapidement un équilibre.

En observant la courbe de viscosité d'un polymere chargé, on peut distinguer tous les types de

comportement en fonction de la vitesse de cisaillement. Une telle courbe est dessinée a la Figure
6.9.

lo lo
A gmn \ gmn
)] PE
) PC
3)
log ¥ log y

(a) (b)

Figure 6.9. (a) Courbe de viscosité typique comportant tous les types de comportement: (1) et (3) plateau
Newtonien, (2) pseudo plastique. (b) courbes de viscosité pour deux polymeres (PE et PC) qui possédent
uniquement les deux premiers comportements (Newtonien et pseudoplastique).
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Les chiffres sur la Figure 6.9a correspondent a un comportement :

1) newtonien : la vitesse de déformation est assez lente pour que les molécules puissent
trouver une position d'équilibre (région newtonienne basse),

2) pseudoplastique : la vitesse de sollicitation est plus grande ou égale a la vitesse de
relaxation,

3) newtonien : la vitesse de sollicitation est beaucoup plus grande que la vitesse de
relaxation, il s’ensuit une orientation des molécules parallelement a la direction de

cisaillement (région newtonienne haute).

La variation de la viscosité 7 en fonction de la vitesse de cisaillement dépend de la structure

chimique, en particulier de :

- la flexibilité des chaines,
- la ramification des chaines,
- du poids moléculaire (Mw),

- de la distribution de My.

Chaque technique de mise en ceuvre peut se caractériser par une gamme de vitesses de
cisaillement qui lui est propre. Cette gamme est approximativement représentée a la Figure

6.10.

logn
A (1) moulage par compression

(2) extrusion

(3) thermosoufflage
(4) moulage par injection

“) -

-< >

Figure 6.10. Courbe de viscosité typique ol I’on a reporté la gamme de taux de cisaillement pour quatre procédés
de mise en ceuvre.
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7 RELATIONS CONSTITUTIVES

Ce chapitre décrit les différentes méthodes permettant de modéliser les comportements des

fluides non-newtoniens, sur la base de lois qui s’en rapprochent le plus.

7.1 EXEMPLES DE RELATIONS

Il existe de nombreuses expressions pour prédire le comportement rhéologique des fluides. Les

lois les plus utilisées sont présentées dans ce chapitre.

Le comportement de la viscosité en fonction de la vitesse de cisaillement est souvent décrit a

I’aide des trois parametres suivants :

- 1m0 = x: viscosité a cisaillement faible, ou le fluide se comporte comme un fluide

newtonien.
- 1o : viscosité a cisaillement infini, ¢’est-a-dire lorsque y — oo.

- Ac:temps de relaxation.

Ces trois valeurs sont représentées sur la Figure 7.1.

logm A

nn

= log ¥

1
)\’C

Figure 7.1. Représentation, sur une courbe de viscosité, de la viscosité a cisaillement nul, a cisaillement infini et
du temps de relaxation.
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711 Loi de puissance

Cette loi qui a déja été exposée dans le Chapitre 6, permet de décrire le comportement d’un

matériau dont la contrainte et la viscosité suivent les lois :

a1 (7.1)

Notons que 1’on trouve parfois cette loi sous la forme :

A (72)
N

0

ou Yo est une vitesse de cisaillement de référence, par exemple 1 s7!. Cette loi se trouve aussi

sous forme logarithmique :
logn = logk +(n -1)logy (7.3)
Elle est décrite a la Figure 7.2.

Alog n o comportement réel
— loi de puissance

log y

Figure 7.2. Courbe de viscosité : comparaison entre le comportement réel et la loi de puissance.

Les désavantages de la loi de puissance sont :

- L'unité de x dépend de la valeur de n

- Elle ne décrit pas un polymere réel avec les régions newtoniennes hautes et basses.
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7.1.2 Modele de CARREAU

Ce modele permet d’affiner la loi de puissance, il est caractérisé par 1’équation :

Bt [y (58]

Mo =M (74)

Cette équation est représentée a la Figure 7.3.

A logn o comportement réel
— modele

Mo

Neo

log y

Figure 7.3. Courbe de viscosité : comparaison entre le comportement réel et le modele de Carreau.

Le modele de Carreau est une équation a 4 parametres : A_,7,,7,.,0 ou A_ est un temps de
relaxation, 7, est la viscosité a un cisaillement nul, 7, est la viscosité a un cisaillement infini

et n est I’indice de pseudoplasticité.

.\ 2
- S (Acy) <<1,alors n—n,

.\2
- Si (Acy) >>1 alors n— 1,

Ce modele ne décrit pas toujours bien la transition entre les plateaux newtoniens et la partie

pseudoplastique ou rhéofluidifiante.
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713 Modéle de CARREAU-YASHUDA

Ce modele est une amélioration du modele de Carreau. Son expression est la suivante :

=M. _ [1 +(Ay )k](n_]%

Mo — Mo (74)

Par rapport au modele de Carreau, on a l’introduction d’un cinquieme parametre (k).
Graphiquement, le coefficient k& permet une transition plus progressive entre les plateaux
newtoniens et la région pseudoplastique ou rhéofluidifiante. Ce modele se rapproche

parfaitement du comportement réel du fluide comme le montre la Figure 7.4.

Le modele de Carreau est un cas particulier du modele de Carreau-Yashuda ou & vaut 2.

A logn o comportement réel
— modele

Mo

N

log Y

Figure 7.4. Courbe de viscosité : comparaison entre le comportement réel et le modele de Carreau-Yashuda.

714 Autres modeéles

Le modele de Cross est défini par la relation :

N-M. _ 1
Mo =M 1+(K)>)]_n

(7.5)

Le modele de Cross est une équation a quatre parametres : 70, 77, K, n ou le coefficient K est

une variable de temps caractéristique et n est une constante de pente.
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Le modele de Ellis est décrit par I’expression :

D (14 (k))" ou Lo

Ny Un 1+(T/Tl/2 )a_l (7.6)

avec 7: cission et 7, : cission pour une viscosité 77 = 7o/2. Cette relation est schématisée a la
Figure 7.5.

A logn o comportement réel
— modele

°o 000 .

logy

Figure 7.5. Courbe de viscosité : comparaison entre le comportement réel et le modele de Ellis.

Le modele de Ellis est une équation a trois parametres, 70, K, a oi K est une constante de temps
caractéristique et a est une constante de pente. Ce modele est bien adapté pour des basses

vitesses de cisaillement, car il ne prévoit pas le second plateau newtonien.

7.2 VISCOSITE EN FONCTION DE DIFFERENTS PARAMETRES

La viscosité dépend de plusieurs facteurs, tels que la vitesse de cisaillement, le temps de
cisaillement, le poids moléculaire, la présence de particules solides, la température et la

pression.

721 Vitesse de cisaillement : 7= 7 (7)

La dépendance de la viscosité a la vitesse de cisaillement a été étudiée aux paragraphes 6.3 et

7.1. Le comportement d’un fluide peut étre classifié selon trois catégories :

- Comportement newtonien
1 ne dépend pas de y . Il concerne les matériaux qui ont un temps de retour i une
position d'équilibre trés court ou qui subissent une vitesse de cisaillement tres faible

ou tres élevée.
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- Comportements non newtonien
- dilatant ou rhéo-épaississant : 1 augmente quand y augmente. Cela concerne

les matériaux qui contiennent certains types de renforts. Ce comportement est

dl au frottement interne entre les particules.
- pseudoplastique ou rhéo-fluidifiant: n diminue quand y augmente. Cela

concerne les matériaux contenant de longues chaines qui s'orientent
conformément au champ de cisaillement. Ce comportement est caractéristique

de la plupart des polymeres et des polymeres renforcés.

Ces trois comportements sont schématisés a la Figure 7.6.

logn
A (b)

@)

/\(C)

Figure 7.6. Courbes de viscosité avec les trois comportements : (a) newtonien, (b) dilatant et (c) pseudoplastique.

log y

722 Temps de cisaillement : 7= 7(9)

Pour des liquides non-newtoniens, la viscosité peut dépendre de la durée pendant laquelle le

cisaillement est appliqué de fagcon irréversible ou non :

- Irréversible : di a des changements permanents dans la microstructure.
- Réversible :
Thixotropie : destruction de la structure plus rapide que sa reconstitution.

Rhéopéxie : destruction de la structure plus lente que sa reconstitution.

Ces comportements se traduisent par des hystéréses sur un diagramme contrainte de
cisaillement - vitesse de cisaillement (Figure 7.7a), ou sur un diagramme viscosité - temps

(Figure 7.7b).

Il ne faut pas conclure de la Figure 7.7 que thixotropie va nécessairement avec rhéofluidifiant

et théopéxie avec rhéoépaississant.
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Deux exemples de comportement typiquement thixotropique sont la peinture et le yoghourt.

thixotropie

T n
newtonien A : |
7z . | |
rhéopexie ! ! - rhéopexie
b ,
: newtonien
b .
! ! thixotrope
Y L -
- 7/ o
(a) (b)

Figure 7.7. Représentation des comportement newtonien, thixotrope et rhéopexique sur des graphes contrainte -
taux de cisaillement (a) et viscosité en fonction du temps, le taux de cisaillement étant constant (b). Il est a noter
que les trois types de comportement sont réversibles (ce que 1’on a essayé de montrer en (b)).

723 Poids moléculaire : 7= (M)

Il existe un poids moléculaire critique, Mw= Mc a partir duquel les effets d'enchevétrement se
font sentir. Pour le polystyréne (PS), Mc = 38'000 g/mol et pour le polyéthylene a faible densité
(LDPE), Mc = 4'000 g/mol. Pour la plupart des plastiques techniques, on a My >> Mc. Ce poids
critique est représenté a la Figure 7.8a. La dépendance de la viscosité par rapport au poids

moléculaire est schématisé a la Figure 7.8b.

logm
A M Mwl > MW2 > Mw3
wl
MW2
Mw3
log
(b)

Figure 7.8. Effet du poids moléculaire sur la viscosité (a) sur un graphique viscosité - poids moléculaire pour deux
taux de cisaillement et (b) sur une courbe de viscosité avec trois poids moléculaires différents.

Les deux courbes présentées montrent la dépendance de 7 a la masse moléculaire. La courbe

décrite a la Figure 7.8a est caractérisée par les équations :

- 770=K1MW si Mw<Mc (7.7)

- =Ko M3 si My>Mc (7.8)
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Si on augmente la vitesse de cisaillement, la création de nouveaux enchevétrements ne peut se

faire aussi vite que les désenchevétrements, donc il n’y a plus compensation.
A de faibles poids moléculaires, on a peu d'enchevétrements, donc il faut des vitesses de

cisaillement plus élevées pour obtenir une orientation suffisante des chaines du polymere. La

partie newtonienne est plus étendue pour de faibles M,.

724 Ajout de particules : 7= 7(¢)

De nombreux fluides sont chargés de particules (on parle alors de suspensions) qui peuvent
influencer de facon considérable leur viscosité. Dans les polymeres on ajoute souvent de la
craie, du sable, des particules de TiO», du noir de carbone, etc., mais également des fibres de
verre, de carbone, d’aramide (KEVLAR), de lin, etc. La taille des particules peut varier de
quelques nanomeétres jusqu’a plusieurs centaines de micrometres. Le diameétre des fibres varie

typiquement entre 5 et 25 um et leurs longueurs entre 0.2 et 50 mm.

Les phénomenes en jeu sont traités en détail aux Chapitres 10 et 11.

7.2.5 Température et pression : 7= 7(7"; P)

Loi d’Arrhenius n =n(T)

Comme décrit précédemment au Chapitre 5, la dépendance de la viscosité a la température

s’exprime par une relation d'Arrhenius lorsque la vitesse de cisaillement tend vers O :

(7.9)

A est un facteur de fréquence qui dépend du polymere et de sa masse moleculaire My, Eq est

I’énergie d'activation pour 1'écoulement visqueux et R est la constante des gaz parfaits. Notons

que la température s’exprime en Kelvin.

Cette équation peut se mettre sous forme logarithmique :
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E 1
1 =lnA+—=*— 7.10
nny(7) =In RT (7.10)

Cette relation est représentée a la Figure 7.9.

lo
i g My

&

T

P
L

Figure 7.9. Représentation graphique de la loi d’Arrhenius. Le logarithme népérien de la viscosité est rapporté a
I’inverse de la température absolue.

L’énergie d’activation augmente avec :

- lataille des groupes latéraux,

- larigidité de la chaine principale.

Elle diminue avec :

- l’augmentation de la vitesse de cisaillement y A cause de I’orientation des molécules

imposées par le cisaillement.

Le Tableau 7.1 présente quatre polymeres en montrant leur structure et la valeur de 1’énergie

d’activation pour I’écoulement visqueux.

La viscosité dépend par ailleurs de la contrainte de cisaillement ou de la vitesse de cisaillement.

Ceci donne :

E
- pour une contrainte de cisaillement 7 constante : 1= B exp( R%) (7.11)

E,
- pour une vitesse de cisaillement y constante : n= C exp( ﬁ) (7.12)
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Tableau 7.1 Valeurs de 1’énergie d’activation et structure de quatre polymeres.

polymere Structure énergie d'activation E,
HDPE W 28 kJ/mol
LDPE 49 kJ/mol
PP 40 kJ/mol
PS 108 kJ/mol

L’indice de 1’énergie d’activation indique quel cas est étudié, c’est-a-dire quel terme est
constant. La variation de la vitesse de cisaillement par rapport a la température pour des

contraintes appliquées constantes est représentée a la Figure 7.10.

log y
A 0, >0, >03

=

Figure 7.10. Représentation de la variation de la vitesse de cisaillement par rapport a la température pour des
contraintes appliquées constantes.

Y

A noter que la dépendance de la viscosité avec la température change quand on s’approche de
la transition vitreuse Ty du matériau. Il est alors préférable de suivre des lois de type WLF,
comme montré au paragraphe 7.3.

Pression : 7= n(P)

La variation due a la pression est exprimée par la relation :

no(P):anP{ZP} (7.13)
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ol a et y sont des constantes, cette derniere étant appelée la compressibilité. L’expression est

décrite a la Figure 7.11.

logn
A P D1> DPa> D3

P3 29)

log

Figure 7.11. Courbe de viscosité : dépendance de la viscosité a la pression.

En combinant la dépendance de la viscosité a la température et a la pression, on obtient :

E
T:P)=D < | yp
1y (T:P) exp{RT x}

(7.14)
ol D est une constante.

73 CONCEPT DU VOLUME LIBRE APPLIQUE AUX LIQUIDES

731 Phénoménologie

On peut appliquer le concept du volume libre (voir paragraphe 5.4) pour trouver une
dépendance de la viscosité a la pression et a la température. Dans les conditions proches de la
température Ty, la viscosité¢ augmente et la loi d’ Arrhenius ne s’applique plus correctement car
d’autres énergies entrent en jeu. Considérons la Figure 7.12 déja vue au Chapitre 5. Le volume
V' (ou volume spécifique comme sur la figure) a une pression P est donné par la somme du
volume occupé V) et du volume libre V'ren fonction du coefficient d’expansion thermique et la

compressibilité du matériau liquide (o et y; sur la figure) et du solide vitreux (‘glass’, oy et

Xe)

V=V,+V, =%+Vfg+Vg[(0@ ~a, )1 -17)-p(x ‘%gﬂ (7.15)
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En divisant par le volume total V, la fraction de volume libre f est :

f=f+0a(T)-T)-P(Ay)

(7.16)
Sous une pression Pona 7T = Tgp = f'=f,, on aboutit a la relation :
A
Tr=T'+£p
Aa (7.17)

On constate qu'avec la pression, la température de la transition vitreuse et la viscosité

augmentent, comme décrit a la Figure 7.12.

«

Specific volume
-
s

;rg:‘ To” T
Temperature

Figure 7.12. Représentation de la variation du volume spécifique en fonction de la température pour deux pressions
données.

7.3.2 Volume libre pour 7(7) et équation WLF

L’équation de Doolittle (voir paragraphe 5.4) est :
n=a'exp{b' f} (7.18)

ol a' et b' sont des constantes, et fla fraction de volume libre. D’ ol 1’équation WLF :
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1 *
o :_fg-2.303(T_ )_ —¢,(r-T1")
mn, £+(T—T*) C2+(T—T*)
Ao (7.19)

Ou T°'=T, Si on considére des valeurs typiques pour f; de 2.5% et pour Aa de

4.5 10*alors on a :

C=— L 174 e Jx _ 5160
f,+2.303 Aot

(7.20)

Une meilleure approximation utilise la transformation T° = T, + 50°C, avec C;=8.9 et

> =102°C:

8.9(7 - (1, +50))
102 +(T - (7, +50))

logn =13 -
(7.21)

La variation de la viscosité en fonction de la différence de température (7 - T°) est représentée

a la Figure 7.13 et comparée avec les différents modeles.

log
A .
réel
WLF
Arrhénius

T=T"

Figure 7.13. Représentation de la variation de la viscosité en fonction de la température et comparaison du
comportement réel avec la loi d’ Arrhenius et I’équation WLF.
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Relations constitutives

74

74.1

742

743

744

74.5

74.6

RESUME DES PRINCIPAUX MODELES

Loi de puissance

n=ry™ o logn =logk + (n —1)logy

Modele de Carreau

(n-1)
L FNPRT e
Mo —MNe

Modéele de Carreau-Yashuda

Modeéele de Cross

n-n, 1

Mo =M 1+(K)})l_n

Modeéle de Ellis

n_ (1+ (KV))Z(H) ou /- S

N

Température : 7= n(7)

AR E 1
n(T) = Ae® I, (7) = In A+~

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)
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74.7 Pression : = n(P)

Ny (P)=aexp{)(P} (7.28)

ol a est une constante et y est la compressibilité. En combinant la dépendance de la viscosité a

la température et a la pression, on obtient :
E
1, (T;P)= Dexp RT +X¥P{ ol D estune constante (7.29)

748 Equation WLF

(7.30)
avec C;=17.4,C>=51.6°Cet T" = T,.

En faisant les changements : 7" = T, + 50°C, C; = 8.9 et C> = 102°C, on obtient :

8.9(T (T, +50))

oen=13- 102+(7 (7, +50))

(7.31)
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8 ECOULEMENTS VISCOSIMETRIQUES
8.1 INTRODUCTION
8.1.1 Ecoulements viscosimétriques types

L'écoulement viscosimétrique est dans la plupart des cas non-uniforme, mais il peut étre
considéré comme cisaillement simple a 1'échelle d'un élément simple du liquide. Il permet

d'obtenir les trois fonctions viscosimétriques 77, ¥ et y» introduites au Chapitre 1.

Nous considérons les deux écoulements viscosimétriques suivants, avec leurs particularités :

- I’écoulement de Poiseuille (provoqué par une chute de pression AP) :
1) plan (entre deux plaques paralleéles immobiles),

2) dans un tube ;

- I’écoulement de cisaillement simple (dans ce cas il n’y a pas de chute de pression) :
1) plan (entre deux plaques parallele en translation),
2) entre deux cylindres concentriques en rotation (appelé Couette),
3) entre deux disques paralleles en rotation,

4) entre un disque et un cone en rotation.

Remarquons que ces deux cas de base peuvent étre combinés. Le paragraphe 8.2 se restreint au
cas d’étude des fluides newtoniens uniquement, alors que dans le paragraphe 8.3 seront traités

les écoulements des fluides non-newtoniens.
8.1.2 Equations de conservation (fluides newtoniens)
Pour comprendre 1’écoulement des liquides newtoniens, nous allons utiliser 1’équation de

conservation de la masse et les équations de Navier-Stokes et, qui proviennent de la mécanique

des fluides (se référer au polycopié « milieux continus »).
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Conservation de Ia masse

Lorsque le milieu est incompressible, 1’équation de conservation de la masse prend la forme

vectorielle réduite suivante :

Vi=0 (8.1)
avec V opérateur divergence et U vecteur vitesse.
A noter que 1’équation (8.1) est valable pour les écoulements incompressibles stationnaires et
non stationnaires (si la vitesse dépend du temps).
Conservation de la quantité de mouvement

La deuxieme équation, lI’équation de Navier-Stokes (conservation de la quantité de

mouvement), sous forme non-conservative en représentation Eulérienne est :
du o i nAii= o7 (82)
pa—+p(u-grad)u—nAu=pf—gradP :
t
avec U :vecteur vitesse, p : masse spécifique, f: ensemble des forces volumiques (externes),
P : pression et A : Laplacien.
Conservation de l'énergie

On se place ici en conditions isothermes (température constante) et la conservation de I'énergie

est alors implicite.
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8.2 ECOULEMENTS VISCOSIMETRIQUES NEWTONIENS

8.2.1 Ecoulement de Poiseuille dans une conduite rectangulaire

Une chute de pression provoque 1’écoulement du fluide dans la direction Ox comme schématisé

a la Figure 8.1. La vitesse de 1’écoulement n’a pas de composante verticale. On considere par

ailleurs le cas 2D (la largeur de la conduite B est infinie)

Figure 8.1. Profil de I’écoulement entre 2 plaques paralleles immobiles, avec h << B.

En considérant les hypotheses suivantes, on va démontrer la forme parabolique du profil de

vitesses :
- Fluide newtonien, incompressible, (a)
- Ecoulement laminaire, (b)
- Vitesse nulle a la paroi, (c)
- Ecoulement stationnaire, (d)
- Pas de forces externes, (e)
- Pression constante dans la section, ()
- Cas bidimensionnel. (2)

Les hypotheses (a) et (b) permettent 1’utilisation des équations (8.1) et (8.2) et la (c) fournit les
conditions aux limites lors de I’intégration. Toutes les autres hypotheses engendrent de

nombreuses simplifications dans les équations (8.1) et (8.2).

On écrit I’équation de conservation de la masse :



8.4 Ecoulements viscosimétriques

Oux , Oy , QU 0 ®) Oux M=0 3_W=M=() 83
ox gy oz © T axay . ax ay (69

et I’équation de Navier-Stokes (8.4) :

2 2 2

.. du du du du -dp du du du
Projection sur x : pl—+u —+u —+u —=|= +n T+ —%+—F [+ pf,
at T dx Ay ‘dz dx ax dy Iz :

2 2 2

du du du. du —dp du Jdu Jdu
Projection sur y : ol—=+u —+u —=+u —=|= +n|—+—+—L|+pf
ot Tdx Y ady ‘oz dy ax dy 9z y

2 2 2

o du du du du -dp du du  Jdu
Projection sur z : P “tu T +u ——+u —|= +n Lt —F+—5|+pf
at dx Y dy ° 0oz dz dx dy dz :

L’hypothese (d) annule les termes contenant une dérivée par rapport au temps, la (e) néglige le
terme pf (forces extérieures), la (g) permet de supprimer tous les termes partiellement dérivés

par rapport a z, la (b) annule les termes d’inertie, c’est a dire (u - grad) u = 0, finalement, la (f)

P . .
permet de poser 8_P = E:)_P =0 et 8_ =cte .Notez bien que a—P <0 sil’écoulement est

0z ox ox

dans la direction de I’axe des x, car la pression est plus élevée a I’entrée du tube qu’a la sortie.

En appliquant toutes ces simplifications, on obtient alors (projection sur x) :

oP 0’
So=1 ay”; (8.5)

Les deux autres équations issues des projections sur y et z se réduisant a O = 0. En intégrant

entre O et /1, on obtient :

1 (dp) 2
ux(y)=2— = y +Cy+C, ou C etC, sontdes constantes (8.6)
n

En utilisant les conditions aux limites (hyp. (c)), on détermine les constantes comme suit :

u(y=0)=0=C

2
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1 (dp) 2 1 (dp) 2 1 (d
Mx(y=h)=0=—(ap)h +Ch =>—(£)h=—clh =>c1=__(_p)h

2n 2n 2n\dx
1 (dp) 2 1 (dp 1 (dp
-— ||y - —|=Z|n -—|=|y(y-h
= uy) Zn(dx)y 2n(dx) y = u) 2n(dx)y(y ) (8.7)

On trouve bien un profil d’écoulement parabolique, du type ay*+ by.

8.2.2 Ecoulement en cisaillement simple entre plaques paralleles

La Figure 8.2 présente la géométrie d’un écoulement en cisaillement simple entre deux plaques

paralleles dont I’une est en translation parallelement a 1’autre.

Uo

—_—

1. —F-T

X 7

Figure 8.2. Ecoulement de cisaillement entre deux plaques paralleles, 1’une des deux plaques ayant une vitesse U..

Pour déterminer le profil de vitesses au sein du fluide on proceéde de la méme maniere qu’au
paragraphe précédent, en partant des équations (8.1) et (8.2), mais cette fois-ci, I’écoulement
est généré par le mouvement de la plaque supérieure se déplacant a la vitesse U,, et non plus

par une différence de pression. Les mémes hypotheéses de départ sont utilisées. On a alors

J
&_p = 0 dans I’équation (8.5). Les conditions aux limites sont donc :
X
ux(y=0)=0 et ux(y=h)=U0 (8.8)
On a alors :
2
du
n—s=0 (8.9)
ay

que I’on integre entre O et h :

= u(y) =C, y+C, ou C,Csontdes constantes d’intégration, avec :
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u(y=0)=0=c,-0

u (y=nh)= U0=>C1=% (8.10)
Finalement :
UO
uly)=—"y
( ) h (8.11)

Le profil des vitesses est linéaire !

8§23 Ecoulement de Poiseuille dans une conduite circulaire

Comme montré a la Figure 8.3 le fluide s’écoule dans la direction x du cylindre sans turbulence.

s

Figure 8.3. Ecoulement dans un cylindre, L >> R.
Il y a une diminution de pression lorsque le fluide le traverse comme le montre la Figure 8 4.

Figure 8 4. (a) Représentation schématique d’un écoulement dans un cylindre et (b) profil de pression le long du
tube.

En coordonnées cylindriques 1’équation de conservation de la masse s’écrit :

—_—— +__&+_.L=O

10 1du, Jdu
()
" rd@ dx

ror

et I’équation de Navier-Stokes devient :
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2
Jdu uﬁur_i_ﬁ‘?”r_”_e

Projectionsurr:  p (——+u, +”x%)= - a_p+
Jt dr r 90 r Jdx ar
(14 \ 19%u, d%u, 2 du,
n |- =(ru, ) |+ + +f,
ar\radr ) r2d602? dx? r2 96
1
Projection sur O : p(&ug +u,.au9+ﬁ%+iur ux(yu" = ——&—p+
Jt dr r d0 r dx r 00

n

2 2 ]
0 1&( ) lo'?ug o"ug 20u y
— | -—ru | |+—= + +—=—L]+
ar\rar\ ) 258" ax 00 Plo

+

Projection surx:  p (‘9”* wy IWe MOy a”x)= _9p
Jx

Jt "9r r 90 Tox

+0f (8.12)

+

[]07( du, \ ] 9%u, lo”ux
ro”rk’ aor )Tr2 002 9x?

Pour simplifier ces équations, on peut poser les mémes hypotheéses qu’au paragraphe 8.2.1,

mais appliquées a la symétrie cylindrique. C’est a dire :

- Fluide newtonien, incompressible, (a)
- Ecoulement laminaire, (b)
- Vitesse nulle a la paroi, (c)
- Ecoulement stationnaire, (d)
- Pas de forces externes, (e)
- Pression constante dans la section, ()

Les hypotheses (a), (b), (c), (d), (e) permettent les mémes simplifications qu’au paragraphe

J J
8.2.1 : les détails ne sont donc pas fournis ici. L hypotheése (f) indique que a—p = % =0.De
r

plus I’écoulement est simple dans la direction x, donc u. = u, = 0.

Finalement, on obtient :

(8.13)
or ar m

2
du du r(ﬁp)

P—i g —t = —
Jx
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Apres intégration, on a :

(8.14)

A nouveau, on obtient un profil parabolique. Les résultats obtenus pourront étre appliqués aux

divers écoulements utilisés dans les rhéometres.
8.24 Variables d’écoulement d’un fluide newtonien
Cas de la conduite circulaire
- Débit Q
Le débit Q vaut par définition :

R

dQ =2mu(ryrdr = Q =f2_7m(r)rdr
0

en reprenant I’expression de la vitesse trouvée au paragraphe 8.2.3, soit (8.14) :

ol (5] |

ona:
dp | R a1 [R R
0=-2 ﬂ—por[RZ—rZ]dr = Q=—2n—p— —_———
dx4no dedn|{ 2 4
donc :

0= —dP/dx \( R* ) _ AP xR’
| 2n 4 ) L 8n

d,
ol le terme chute de pression Zp <0.

(8.15)

(8.16)

(8.17)

(8.18)
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- Vitesse de cisaillement y

Par définition, on a :

(8.19)

On peut retrouver la méme expression par un simple calcul d’équilibre des forces. A la Figure

8.4, en égalisant les forces a la distance r du centre du petit élément de volume, on trouve :

7, 2wrdx = rr?-dP (8.20)

ou le terme de gauche correspond aux forces de cisaillement et celui de droite aux forces de

pression. D’ou :

i
2 dx (8.21)

T
Le fluide étant newtonien, on a y = — . En utilisant judicieusement les équations (8.18) et (8.19)

n
on écrit :
40
’J/M__[ER3] '}’A
(8.22)
et aussi :
Ra —d 4
ra 2V ()
MTTTTag . = My e (8.23)

8Q

ou 'indice A signifie « apparent » ; c¢’est la valeur qui ressort lors des mesures (par théometre,
par exemple) et I’indice w signifie « a la paroi » ; ¢’est la valeur réelle, en un point particulier

sur la paroi.
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Notons que pour rester rigoureux, la vitesse de cisaillement devrait étre négative. Cependant,
par tradition, et pour simplifier, ¢’est souvent une valeur positive que 1’on donne, en considérant

seulement la valeur absolue de cette vitesse.

Dans un fluide newtonien, les valeurs de la vitesse de cisaillement apparente sont égales aux
valeurs de la vitesse de cisaillement a la paroi. Ce n’est pas le cas pour les fluides non-

newtoniens.

A partir de I’équation (8.5), on obtient une autre expression de la vitesse :

2 2
)= -(7)

(8.24)

Cas de la conduite rectangulaire

La conduite et I’écoulement sont définis a la Figure 8.5. Il est a noter que par rapport au

paragraphe 8.2.1, le repere ne possede plus la méme origine !

/ sens de 1’écoulement

YA

=
2N

T

e .
-

Figure 8.5. Représentation schématique de I’écoulement dans une conduite rectangulaire.

Dans ce cas-la, on trouve la vitesse de 1’écoulement en repartant de 1’équation (8.5) du

paragraphe 8.2.1 :

1( dp) ° .
uz(y) = %k EJ y +Cy+C, ou C etC, sontdes constantes (8.25)

Les constantes C, et C, s’obtiennent en posant les conditions aux limites :
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1 ( dp\H® _ H
wly-oo o LWV H (8.25a)
\7 72 A )
H 1 (dp\H _H
u(y=——\=0 = —/—p\——C1—+C2= (8.25b)
STy m a4 2
I (dp\ H
La différence de ces 2 équations donne C, = 0 et leur somme donne C, = ——| —|—.
mldz) 4
Finalement on trouve :
2
w(y)=- L (4] -’
Z el 2) (826)

- Débit

Le débit est donné par I’expression :

H
dO=u(y)-dS=u(y)-B-dy = Q:fu(y)-B-dy (8.27)
H
2
d’ou
Ap | H3 ][ 2H3 Q=M
O=-B —_ = 12 nL (8.28)
2nll 4 3\ 8
83 FLUIDES NON NEWTONIENS

L’équation de Navier-Stokes n’est plus utilisable dans le cas des fluides non-newtoniens, car
I’hypothese du fluide newtonien (viscosité indépendante de la vitesse de cisaillement) n’est plus
vérifiée. On pourrait encore résoudre les équations de base de 1’écoulement en introduisant une
loi adéquate, comme la loi de puissance, mais on doit vite recourir a des méthodes numériques.

On utilise alors une approche différente, soit 1’équilibre des forces.

8.3.1 Ecoulement de Poiseuille dans une conduite circulaire

De 1’équilibre des forces sur un élément de volume dans une conduite circulaire (Figure 8.4,
paragraphe 8.2.3), on avait trouvé la relation (8.21), indépendante de la viscosité et donc aussi

applicable a un fluide non-newtonien, soit :
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p_rae
2 dx (8.29)

La vitesse u se détermine de la maniere suivante (voir les paragraphes 1.4.1 et 1.4.2) :

©du u(r) r-
Y=— uR)=0 u(r)= [ du=[ydr
dr 0 R (8.30)
Alors en caractérisant le comportement du fluide non-newtonien par sa loi de puissance :
1
t=xi' = 7=(YJ (8.31)
On remplace 7 par sa valeur dans I’équation bilan :
I
1 1 d A
VAR LAY,
u=f|— | dr=)| —— | dr= fr dr (8.32)
R\ K R\ 2K dx 2K R
Le calcul donne :
dp [ dx l 7,
2 +
w(r )= K [R(%f’)—r(%« 7) (8.33)
(/1)
n
8.3.2 Ecoulement de Poiseuille dans une conduite rectangulaire

En appliquant 1’équilibre des forces sur un élément de volume rectangulaire de la Figure 8.5,

on aboutit au résultat (de la méme maniere qu’au paragraphe 8.2.4 pour le tube cylindrique) :

]

_Ap i n (E) n ot/
u, (y)A KL) 5 y (8.34)
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833 Variables d’écoulement d’un fluide non-newtonien

Cas de la conduite circulaire

- Débit Q

A partir de la vitesse d’écoulement trouvée au paragraphe 8.3.2 (équation 8.7), il est possible
de calculer le débit du fluide Q comme définit précédemment par 1’équation 8.15. On aboutit

au résultat suivant :

—d
Vi x| ()

Q0= o (}/n)+3 R (8.35)

- Vitesse de cisaillement y
La vitesse de cisaillement a la paroi est déterminable et vaut :

st () de ) (),

‘r:R

(8.36)

On définit la vitesse de cisaillement apparente Yy , comme valant :

.o 40
Ya= [ﬂ:R3]

(8.37)

Dans un fluide non newtonien, les valeurs de la vitesse de cisaillement apparente ne sont pas
égales aux valeurs de la vitesse de cisaillement a la paroi. Pour obtenir ¥, il faut corriger les

valeurs de ¥ , en utilisant la relation (8.37).

On obtient finalement la viscosité apparente 7,:

- (-dP/dx)mR
AL T oA
7. 80 (8.38)
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Cas de la conduite rectangulaire
- Débit Q

En reprenant la valeur de la vitesse de 1’écoulement dans ce cas (§ 8.3.1), on trouve comme

expression pour le débit :

1

n&Hz( HAP}

2(2n+1)

KL (8.39)

834 Profils de vitesse d’écoulement

Le gradient de vitesse d’écoulement, i.e. la fonction de distribution de vitesse dans le fluide,
dépend du fluide qui s’écoule. Les profils de vitesse de fluides décrits par la loi puissance sont
dessinés a la Figure 8.6. On remarque que le profil de vitesse d’un fluide dilatant est différent
de celui d’un fluide newtonien, car le gradient dépend de la valeur de I’indice n de la loi de
puissance. On rappelle qu’un fluide dilatant prend des valeurs de n supérieures a 1, et qu’un

fluide pseudo plastique des valeurs inférieures a 1.

AL
R

u(r)
n=0ln<1 n=1 n>1 n=o u
0 | L v N -

Lol

=)
—_

Figure 8.6. Profils de vitesse d’écoulement en fonction de la valeur de 1’indice n de la loi de puissance.
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84 ANALYSE DIMENSIONNELLE

« Ne jamais faire de calculs avant d'en connaitre le résultat. » (J.A. Wheeler)

84.1 Principe fondamental

L’analyse dimensionnelle est une méthode bien connue pour réduire le nombre et la complexité
de variables expérimentales influengant un phénoméne physique donné. Cette approche
remonte aux travaux d’Euler sur les unités et les dimensions en physique dans la deuxiéme
moitié du 18°™ siécle. Elle repose sur le principe fondamental selon lequel toute relation entre

des grandeurs physiques est dimensionnellement homogene.

Si un phénomene dépend de n variables dimensionnelles, I’analyse dimensionnelle permet de
réduire le probleéme a seulement & variables sans dimension. La différence n — k est en générale
¢gale au nombre de dimensions fondamentales qui gouvernent le probleme étudi€. Les quatre
dimensions fondamentales utilisées dans le cadre de la mécanique des fluides sont la masse M,
la longueur L, le temps T et la température @, ce qu’on désigne par le systeme {MLT® } (ou

{FLT® }, la force F remplacant la masse M).

La résolution des équations de conservation (voir le paragraphe 8.1.2) peut s’avérer trop
difficile dans le cas de géométries et de conditions d’écoulement complexes, et il faut alors
recourir a des expériences. Toutefois ces dernieres peuvent rapidement devenir fastidieuses et
extrémement cotliteuses ... L’analyse dimensionnelle offre une alternative tres efficace a ces
problemes. Cette méthode est par exemple a I’origine du développement de maquettes, par
exemple testées en bassin de caréne ou en soufflerie, ce qui revient considérablement moins

cher que de tester des prototypes de taille réelle, a I’échelle 1.
Supposons qu’on s’intéresse a la force (de trainée) d’un objet dans un fluide, comme une

automobile dans ’air. On considére que cette force F' dépend de la taille de I’objet L, de sa

vitesse V, de la densité du fluide p et de sa viscosité 7, ce qui fait cinq variables au total :

F=fL,V,p,mn) (8.40)



8.16 Ecoulements viscosimétriques

Trouver la fonction f expérimentalement consisterait a faire varier chacun des 4 parametres en
gardant les autres constants. En choisissant 10 valeurs pour chacun des parameétres, on arrive
au nombre énorme de 10*=10'000 expériences ! L’analyse dimensionnelle arrive a la
rescousse, en réduisant I’équation (8.40) a une forme équivalente, fonction de deux variables
seulement et non plus de cinq comme nous le verrons dans la suite, nécessitant par conséquent

10 expériences et non plus 10'000.

8.4.2 Théoreme de Vaschy-Buckingham pi

En 1914 Buckingham propose la méthode d’analyse dimensionnelle, déja formalisée par
Vaschy en 1892 et utilisée de nos jours sous 1’appellation du théoréme de Vaschy-Buckingham-
pi. Le terme pi correspond a la notation mathématique du produit de variables I1. Le théoreme

s’exprime comme Suit :

Soit une loi physique entre n variables avec j dimensions indépendantes, alors on peut

exprimer cette loi sous la forme d’une relation entre k = n — j nombres sans dimension :

a =fla,a...a)=0 = Il =gdL,IL...T)=0 (841)

Le théoreme permet de trouver des nombres adimensionnels sous la forme de produits

dénommés I1,, IL, ... I'L. L application de ce théoréme se fait en cinq €tapes :

1. Etablir la liste des n variables du probléme. L’oubli d’une variable importante
conduira a I’échec de I’analyse.

2. Etablir la liste des dimensions de chacune des variables selon le systeme {MLT® }
(ou {FLT@®}) et établir le nombre de dimensions du probléme, a savoir la valeur de
j. Voir le Tableau 8.1 avec les dimensions de propriétés pertinentes pour des
problémes de mécanique des fluides.

3. Sélectionner j variables ne formant pas un ‘groupe IT’, i.e., des produits de variables
possédant au moins une dimension différente. En général on choisit la taille, la
vitesse, la densité, et ajouter une variable aux j variables sélectionnées, par exemple

la variable dépendante de 1’équation qu’on cherche a analyser (F dans 1’équation
8.40).
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4. Former le produit de puissances des variables puis trouver les valeurs des exposants
rendant le produit adimensionnel, et réitérer j-1 fois les étapes 3 et 4 avec 1’ajout
d’autres variables.

5. Ecrire la fonction de variables adimensionnelles et vérifier que chaque groupe IT est

bien adimensionnel.

Tableau 8.1. Dimensions de propriétés pertinentes pour des probléemes de mécanique des fluides [F. White, Fluid
Mechanics].

Dimensions

Quantity Symbol MLT® FLT®
Length L L L
Area A L? L?
Volume Vv L L’
Velocity % LT! LT™!
Acceleration davildt LT LT
Speed of sound a LT! LT ™!
Volume flow 0 L’r! 1!
Mass flow m MT™! FTL™!
Pressure, stress p, T ML 'T 2 FL™?
Strain rate é 7! 77!
Angle [% None None
Angular velocity [0} 7! T!
Viscosity " ML™'T™! FTL™?
Kinematic viscosity v L’T™! L’r!
Surface tension Y MT? FL™!
Force F MLT > F
Moment, torque M ML*T™? FL
Power P ML*T™ FLT™!
Work, energy W, E ML*T? FL
Density p ML FT*L™
Temperature T (C) (C)
Specific heat Cps Cy L’T7?07! L’T7?07!
Specific weight b% ML?T? FL™3
Thermal conductivity k MLT0™! FT7'07!
Expansion coefficient B o' 0!
8.4.3 Analyse dimensionnelle de la force de trainée

Prenons I’exemple donné par 1’équation (8.40). Il y a n =135 variables. Les dimensions de

chacune de ces variables sont :

-~ F: {MLT?
- L: {L}

_ VLT

- p: AML7}

- n: {ML'TY}
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Seules j = 3 dimensions sont présentes. Ainsi, on s’attend a ce que k=5—-3 =2, c’est a dire
qu’on cherche deux I1, soit I'T; et Tl,. Il faut alors sélectionner j variables ne formant pas un
‘groupe IT’. En inspectant la liste on constate que L, V' et p ne peuvent pas former un groupe I1

parce que seul p contient la dimension M et que seul V' contient la dimension 7.

Pour trouver les deux I1, on sélectionne ces trois variables L, V et p, que I’on combine avec une
quatrieme, soit F, soit 7. Pour I1; on choisit la variable dépendante qui est la force F, et on

écrit :

[T = LVPprFe = (L)Y(LT ") (ML?)(MLT?)? = M°LOT® (8.42)
ou le terme MP°L°T? traduit la condition d’adimensionnalité des IT. La force F étant la variable
dépendante on pose d = 1, et il reste trois équations pour trois inconnues a, b et ¢, que I’on
résout pour chaque dimension :

- LongueurL: a+b—-3c+1=0
- Masse M : ct1=0

- Temps T: -b-2=0

Ontrouvea=-2,b=—-2¢etc=-1, et donc:

F
I,=L"V?p'F=——=C,

pviL (8.43)
Cr est le coefficient de force adimensionnel.
Pour trouver I, on ajoute la viscosité 77 aux trois variables L, Vet p:
I =LV = (L)YLT (ML) (ML'T") = MOLOT® (8.44)

On peut prendre n’importe quelle valeur pour I’exposant d mais la valeur 1 conduit a un résultat

bien connu. On a :
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- LongueurL: a+b-3c-1=0
- Masse M : ct+1=0
- Temps T: -b-1=0

On trouve a=b=c=-1, etdonc :

(8.45)
qui est en effet ’inverse du nombre de Reynolds.

On a en définitive la relation entre deux variables, équivalente a la relation (8.40) qui elle était

entre cinq variables :
Cr=g(Re™) (8.46)

La fonction g est différente de la fonction f mais elle contient la méme information : rien n’est

perdu dans 1’analyse dimensionnelle.

Cette relation correspond en fait a la loi de Stokes :

C.= on soit F=6xnVL
Re (8.47)

L’analyse dimensionnelle ne permet pas a elle seule de trouver le terme 6m. Il reste toujours
une constante sans dimension dont on ne connait pas la valeur numérique et un calcul plus

complet est nécessaire.
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9 MESURES RHEOMETRIQUES

Les rhéometres permettent de mesurer la viscosité et les propriétés viscoélastiques comme les
modules élastique et de perte en cisaillement par exemple d’un polymere. Il en existe diverses

sortes, chacun possédant des avantages et des inconvénients.
9.1 RHEOMETRE CAPILLAIRE

Le rhéometre capillaire utilise un écoulement, forcé par un piston, traversant une filicre
cylindrique de tres petit diametre. On contrdle en regle générale la vitesse du piston, et dans
certains cas on contrdle plutot la force. Force ou pression et vitesse du piston sont mesurables.

L’appareil est schématisé a la Figure 9.1.

%4
N
7,

Figure 9.1. Schéma d’un rhéométre capillaire avec R << Rj.

9.1.1 Détermination de la viscosité

La pression Py exercée sur le fluide par le piston est :

F
P, = dz
TR,

©.DH

La contrainte a la paroi s’obtient par 1’équilibre des forces et vaut :

T

w

_RAP_ K
2 L

2(L/R) ©2)
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Pour un fluide newtonien, la vitesse de cisaillement se détermine par :

40
TR?

Vu=74=
(9.3)

d’ou la viscosité, obtenue en mesurant le débit O sous une pression Py (on retrouve bien
I’équation 8.23) :
T AP 7R’ #R* P,

"= T2(LiR) 40 8L 0

94

En fait 1’équation (9.2) pose un probleme de convergence, ce que résout la correction de

Bagley.

9.1.2 Correction de Bagley

Lors d’un écoulement dans un tube ou il y a changement brusque de diametre (Figure 9.2a), la
pression totale générée par la géométrie est la somme de la pression créée par le capillaire lui-

méme et de la pression créée par la zone convergente précédant le capillaire :

P P + APconvergence (9 5 )

La correction de Bagley consiste a calculer une longueur de capillaire fictive a ajouter a celle
du capillaire réel et qui donnera une perte de pression égale a la pression de convergence. On
introduit un terme fictif qui va corriger la contrainte de cisaillement a la paroi. Le terme fictif

correspond soit a une longueur, soit a une pression.

NN N Ap g
=%\
)/;Z—ﬁ;\\ Y

\\\\\\\\ \\ ;

|~

Y

(b)

Figure 9.2. Correction de Bagley. (a) schéma d’un tube ou il y a un changement brusque de diametre.
(b) graphique du rapport des longueurs du capillaire en fonction de la perte de pression.
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I1 suffit alors de construire le diagramme différence de pression-longueur relative a partir de
résultats expérimentaux, comme a la Figure 9.2b. La valeur de e est la distance entre le point
d’intersection de la droite expérimentale et I’origine. On obtient la contrainte de cisaillement a

la paroi par la relation :

Ap
T = — .
w ou représente le facteur de correction 9.6
2L/ +]e)) e rep (9.6)

Par conséquent la viscosité devient :

Tw ﬂ-R4 L P d L non corrigé
n=—t= el eyl
vy, S8L\L+R-ld) Q0 \L+R{

.7

913 Correction de Rabinowitsch

Pour un fluide non-newtonien la relation contrainte a la paroi-taux de cisaillement n’est plus
linéaire car la viscosité dépend du taux de cisaillement et une correction s’avere nécessaire.
Rabinowitsch a développé une approche en 1929 pour traiter le cas de fluides décrits par la loi

puissance et obtenir la viscosité, comme décrit dans le paragraphe suivant.

Lors de mesures capillaires, on détermine la viscosité du fluide en mesurant la différence de
pression pour trouver directement le débit qui, dans le cas d’un fluide newtonien est donné

par :

TR AP
— 9.8)
8n L

On détermine ensuite par les équations de la mécanique des fluides le taux de cisaillement

apparent et la contrainte de cisaillement a la paroi :

. 40 R AP
7, = et T,=—-—
R 2 L (9.9)
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Pour un fluide newtonien, la viscosité est alors déterminée par la relation linéaire :

T=ny, ou Y.=7, (9.10)

Pour les fluides non-newtoniens, le probleme est plus compliqué, car la relation contrainte a la
paroi-taux de cisaillement n’est plus linéaire (la viscosité dépend du taux de cisaillement).
Pour pallier ce probleme, on utilise la procédure de Rabinowitsch, qui permet de corriger le
taux de cisaillement apparent. La correction se fait en tracant une droite avec quelques valeurs

de la contrainte a la paroi et du cisaillement apparent comme effectué a la Figure 9.3.

log y
A 8T

Figure 9.3. Représentation, en logarithme, du taux de cisaillement en fonction de la contrainte a la paroi.

La pente logarithmique de cette droite fournit un coefficient b de la relation empirique :

dLogy, dLny,

dLogt, dLnt,

b

©.11)

En intégrant par parties 1'équation de débit 8.35 et en posant dr = (R/zw)d 7 (a la paroi), puis en

dérivant I'expression obtenue pour le débit selon zy, on trouve 1’équation de Rabinowitsch :

P (3+bj
w4 i
4 (9.12)

La loi de la puissance donne :
b 1 o=y 3n+1
- n YW—YA 4n (913)
La viscosité réelle est :

n=-— 9.14)
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Les différentes étapes du calcul de la viscosité sont résumées a la Figure 9.3.

914

Mesure capillaire

Hypothese du liquide newtonien

v

Vsl

Correction

A _
o | b
V{I=YW
>
=>b

v

. . (3+b
YW=)/a\ 4 )

Fluide newtonien ?

TM’
> =" <
Vi

Figure 9.4. Calcul de la viscosité dans le cas de fluides newtonien et non-newtonien.

Avantages et inconvénients du rhéometre capillaire

Avantages : conditions représentatives des conditions réelles de procédés de mise en
ceuvre, mesure des viscosités en cisaillement et élongationnelle.

Désavantages : formation de ‘vortex’ de fluide au niveau de la contraction de diametre
(voir Figure 9.4a et Chapitre 15) et nécessité d’établir des corrections, éventuels
problemes de glissement du fluide sur la paroi du capillaire, et consommation de

matiere assez importante.
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9.2 RHEOMETRE DE COUETTE

Un écoulement de Couette est défini comme un écoulement d’un fluide cisaillé entre deux
cylindres coaxiaux, comme le montre la Figure 9.5. On utilise ce type d’écoulement pour

mesurer la viscosité.

NN
\

\

A\

‘ 2R, ‘
Figure 9.5. Schéma d’un rhéoméetre de Couette.

92.1 Détermination de la viscosité

En équilibrant les moments le long des faces latérales, on trouve que :

T(r)= avec M = couple (9.15)

2

2mr L

En supposant que ’espace 0 = Ro— R: entre les deux cylindres est trés petit, c’est-a-dire

R1 = Ro=R, on écrit avec la condition O << R :
= — = — (9.16)

ol w est la vitesse de rotation du cylindre central. La viscosité s’obtient alors :

Mo

T
Y 2nR'Lw (9.17)
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Dans la géométrie concentrique traitée ici, on a le taux de cisaillement a la surface du cylindre

interne (rayon R;) tournant :

o (RIR)
(R/R) -1 (9.18)

Notons par ailleurs que lorsque o devient trop important, I’équation 9.16 n’est plus valable et

on doit poser :

y=r- Mo _ i/_6>
dr dr\ r (9.19)

92.2 Cas de fluides non-newtoniens

Dans le cas d'un fluide de type loi de puissance, 1'équation (9.15) donnant la contrainte reste

valable, par contre le taux de cisaillement a la paroi du cylindre interne en rotation prend la

forme :
2/n
.20 (R/R)
1 2/n
" (R /R -1
( / ) (9.20)
923 Avantages et inconvénients du rhéometre de Couette

- Avantage : y est constant si 6<< R, y peut étre grand, et 77 peut &tre petit.

- Désavantage : source d’erreur avec le film horizontal.
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93 RHEOMETRE CONE - PLAQUE

Un écoulement entre un cone et une plaque dont I’un est en rotation permet, moyennant
quelques hypotheses, de déterminer la viscosité. On construit des rhéometres utilisant cet
écoulement comme schématisé a la Figure 9.6, ’avantage principal étant d’obtenir un taux de

cisaillement constant dans le fluide.

| A

i N
-

dy

2

dr cos a.

Figure 9.6. Schéma d’un rhéometre cone — plaque ou céne — plan.
9.3.1 Détermination de la viscosité

Les hypotheses pour déterminer la viscosité sont :

- aest petit (<1°),

- pas d'effet d'inertie,

- 7,y constants selon .
Les lignes de fluide forment des cdnes coaxiaux (ce qui explique que y est constant) et on
trouve que :

. uy(r) wrcosa
r= o(r) " ra

W
~— car cosa=1 9.21)
a

La cission 7 (r) est constante, car zest une fonction de ¥ qui est constant et donc :

7 (2mr-cosadr) r cosa=dM (9.22)
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En intégrant,on a :

1%05(1 3 3
) 2 21TR 27 TR
M =2mtCc0os « fr dr= ~

0 3cosa 3 (9.23)
La viscosité est finalement :
T 30 M
) ; ) ﬁ @ (9.24)
932 Avantages et inconvénients du rhéometre cone — plaque
- Avantages : pas besoin de grande quantité de fluide, la vitesse de cisaillement est

uniforme dans le fluide, préparation et nettoyage de 1’appareil facile.
- Désavantages :  source d’erreur provenant des bords (extérieur de 1’appareil) et du cone,

mal adapté pour mesurer des fluides peu visqueux.

94 RHEOMETRE A PLAQUES PARALLELES

L’écoulement entre deux plaques paralleles dont 1'une est en rotation, permet aussi de

déterminer la viscosité d’un fluide. La géométrie est plus simple que la géométrie cone — plan.

Le fonctionnement du rhéometre utilisant cet écoulement est décrit a la Figure 9.7.

/] 7

Figure 9.7. Schéma d’un rhéometre a plaques paralleles.
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94.1 Détermination de la viscosité

La vitesse de cisaillement y est nulle & = 0 et maximale & = R et n’est donc pas constante

contrairement a la géométrie cone — plan. La rotation d’une plaque donne la relation :
Y =— (9.25)

L’équilibre des moments fait que :
©(r) 2nrdrr=dM (9.26)
En intégrant, on trouve :

3
M = ZﬂIORr2T(r)dr = 27R Ty

3 9.27)

d’ou la viscosité :

_ Ty _ 3Md
Ve 2moR' (9.28)
Dans le cas d’un fluide non-newtonien de type loi de puissance, on a :
n n 2 R3+n n
M =2ﬂer2K(ﬂ) dr=27z(9j J.er dr = il K(Qj
0 d d 0 3+n d (929)
Et si la loi d’écoulement n’est pas connue, on a la relation :
3M 1dinM
T, = —| 1+= - (9.30)
2R 3dlny,

Il s’agit d’une correction du type Rabinowitsch (y = Rw / d).
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94.2 Avantages et inconvénients du rhéometre a plaques paralleles

- Avantages : pas besoin de grande quantité de fluide, outillage simple, préparation et
nettoyage de I’appareil facile.
- Désavantages :  taux de cisaillement non-homogene, source d’erreur provenant des bords,

mal adapté pour mesurer des fluides peu visqueux.

9.5 EQUIVALENCE COX-MERZ

I1 est parfois difficile de réaliser des essais viscosimétriques avec un gradient de cisaillement
y élevé et des déformations suffisamment grandes pour atteindre un état stationnaire.
L’utilité des relations de Cox et Merz réside dans le fait qu’il est possible d’étendre la plage
des taux de cisaillement dans le but de déterminer les fonctions matérielles (7, G’, G,

w1, ...) d’un fluide donné.

La relation de Cox-Merz illustrée a la Figure 9.8 établit I'équivalence entre y et la pulsation

(oc fréquence) w. Les deux variables ont pour unité I’inverse d’un temps [s'] :

n(y')=n*(w)| ol w=?[s'1] 9.31)

Il est a noter que les rhéometres dynamiques peuvent atteindre une zone de 0.001 < @ < 100
rad/s et les rhéometres capillaires travaillent en général entre 0.1-10 < Y <10°000 s'. Cette
relation est bien suivie par les polymeres a molécules flexibles, mais montre des faiblesses
pour certains polyéthylénes a chaine linéaires et branchées. Lorsque la loi de Cox-Merz est
valable, il est alors possible de prédire G’ et G’ connaissant la viscosité en fonction de la

pulsation dans le plan complexe, définie comme :

(9.32)
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N (Pa-s)

10*
A Capillaire
3 _ Cone-plaque
10> |-  stationnaire %
R
4—p
O Cone-plaque A
1 02 | oscillatoire A
A
A
1 1 1 ] ] ] ]
10
1073 107! 10! 10° 10°

y 1) or w(rad/s)

Figure 9.8. Illustration de la relation de Cox-Merz dans le cas du polypropylene a 200°C : les mesures a basse et
moyenne vitesse de cisaillement sont effectuées a I’aide d’un rhéometre cone-plaque (en mode statique puis
dynamique), et les mesures a grande vitesse de cisaillement proviennent d’un rhéometre capillaire.
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10 ECOULEMENTS TURBULENTS

Ce chapitre aborde I'analyse des écoulements quand le nombre de Reynolds, Re, dépasse une
certaine limite, et que 1'on observe un changement de la relation entre le débit (ou la vitesse
du fluide) et la chute de pression. On a vu au Chapitre 8 les solutions dans le cas
d’écoulements laminaires Newtoniens ou non. Dans ce Chapitre qui reprend des éléments et
quelques figures du livre Fluid Mechanics de F. White, nous ne considérerons que le cas

Newtonien.

10.1 APPARITION DE LA TURBULENCE

Des mesures expérimentales avec un anémometre ou un capteur de pression ont montré que
quand la vitesse d’écoulement augmente, une petite perturbation de 1’écoulement ne se
stabilise plus rapidement comme c’est le cas d’un écoulement laminaire. Cet effet est
schématisé a la Figure 10.1 et dépend de Re (transition vers 10° — 10%) et de la rugosité de la

surface sur laquelle le fluide s’écoule, qui crée des perturbations.

u u u
1a20%dest
I N _ N '
t t t
Régime laminaire Régime transitoire Régime turbulent
Re faible Re moyen Re élevé

Figure 10.1. Evolution temporelle d’une perturbation de la vitesse d’écoulement u et transition du régime
laminaire vers le régime turbulent.

Les valeurs de Re pour les différents régimes sont les suivantes :

- Re<1 écoulement a faible Reynolds, ou dit de "Stokes", ou creeping flow
- Re <1000 écoulement laminaire

- 10°<Re<10*  écoulement transitoire (transition Re = 2300-2500 selon les sources)
- 10*<Re<10°  écoulement turbulent, dépend de Re

- 10°<Re écoulement trés turbulent, ne dépend plus de Re
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Dans le cas de 1’écoulement laminaire on a vu au Chapitre 8 que le flux s’exprime selon :

_APaR
L 8n

Q:
(10.1)

Et avec # = Q/ 7R’ on obtient AP =8nLi / R?, c'est 4 dire que la chute de pression AP est
proportionnelle a la vitesse moyenne de I’écoulement # . Quand Re augmente, on observe un
changement de cette dépendance, ce que montre la Figure 10.2 : il faut augmenter beaucoup

plus la pression pour un accroissement de vitesse donné, c'est a dire que le fluide résiste plus a

I'écoulement.

120

Turbulent flow
Ap o V175

100 —

80 —

60 —

Pressure drop Ap, 1bf/ft2

40 —

Laminar flow
Ap oV

20 —

L— Transition ——>|

I I I I
0 0.5 1.0 1.5 2.0 2.5

Average velocity V, ft/s

Figure 10.2. Dépendance de la chute de pression dans un écoulement en fonction de la vitesse moyenne de
I’écoulement [F. White, Fluid Mechanics].

Tout cela a entrainé des recherches dans les années 1839-1900 pour tenter de modéliser ces
effets trés complexes, et atteindre des précisions d’environ 5 a 10% pour prédire les
écoulements. Les analyses se fondent sur des expériences et sur des méthodes semi-
empiriques qui sont encore utilisées aujourd’hui en raison de leur simplicité d’usage. L’idée

de base est de considérer les valeurs moyennes des vitesses locales dans le temps.
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10.2 ANALYSE DE LA TURBULENCE

Les travaux de recherche du 19°™ siécle ont été surtout développés dans le cadre des
écoulements d’eau ou de gaz dans des conduites, raison pour laquelle on utilise souvent des
termes hérités de la mécanique des fluides dans le génie civil ou hydraulique. Il est apparu
que la rugosité des surfaces sur lesquelles le fluide s’écoule influence fortement 1’écoulement
du fluide. La démarche développée dans ce qui suit consiste a établir une relation entre la
chute de pression et le débit dans une conduite, via un facteur de frottement a la paroi et la

rugosité de cette dernicre.

10.2.1 Hauteur piézométrique

On définit la hauteur piézométrique /g, selon le schéma de la Figure 10.3 :

ho=nz+ 2P
P8 (10.2)

Figure 10.3. Schéma de la géométrie d’écoulement dans une conduite.

10.2.2 Frottement

Pour un écoulement incompressible 1’équilibre des forces s’écrit :

(AP+ pgAz)nR* =7, (27R)L (10.3)

d’ou:

P8R (10.4)



Ecoulements turbulents 104

On définit le facteur de frottement £, lié a la contrainte a la paroi 7, et donc a la hauteur
piézométrique /g , et fonction du nombre de Reynolds (Rep pour la géométrie de la conduite

de diametre D) et de la rugosité ¢ de la paroi :

87 2 . —_ 0
=—2= = f(Re,e/D =
feom ==/ (Ree/D) o W=
D2g (10.5)
on a également une relation explicite entre AP et f:
ap=fPL =
2 D (10.6)
Dans le cas d’un écoulement laminaire on a :
—-4(P+ pgz 4
TR 2n 4R v dx 2
(10.7)
on trouve alors que (avec D = 2R) :
8T 4 4 uD
f= _”526_77:6 avec ReD:pu
pu-  puD Re, n (10.8)
Dans le cas d’un écoulement turbulent ce résultat ne s’applique pas.
1023 Résolution des équations de Navier-Stokes pour un écoulement turbulent

On part des hypotheses que la densité p et la viscosité 77 du fluide sont constantes, donc d’un
fluide Newtonien incompressible. Ces hypotheses sont valables pour analyser 1’écoulement
d’eau ou de pétrole, mais pas de gaz. Les équations de continuité (conservation de masse) et
de quantité de mouvement (Navier-Stokes) s’écrivent :

du, Ou, Ju

L+ —2+—==0
ox dy 0z (10.9)

p& =-VP+pg+nViu
Dt (10.10)
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ou D représente ici la dérivée totale :

Di di ~
—=—+ugradu
Dr  dr (10.11)

La résolution de I’équation de Navier-Stokes dans le cas laminaire dans une conduite
cylindrique (ux(r), ur =0, ug = 0), avec a été vue au Chapitre 8. Dans le cas turbulent les 3
composantes de vitesse ux, ur et ug sont non nulles ce qui complique énormément la résolution
de I’équation. En 1895 Reynolds propose alors de considérer la moyenne temporelle de la

vitesse (voir la Figure 10.1) :

u= iJ.@udt
-0 (10.12)

ou O est la période de moyennage (de ’ordre de 5 s en pratique), supérieure a la période de

fluctuations. La fluctuation est alors :
u'=u—u (10.13)

Par définition la valeur moyenne des fluctuations est nulle (#'=0). On définit également leur

intensité :

" :ljeu'zdt #0
e (10.14)

On réécrit I’équation de Navier-Stokes en remplacant u par U , et de méme, la pression P par

P-P.

. . du_ du [ . o
Sachant que pour des fonctions continues on a " L= " * les équations de continuité et de
X X

quantité de mouvement (sur x) prennent la forme :

di, du, Ji
—+—+—=—==0
ox dy 0z (10.15)
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pdﬁx + pil ou, + pil ou, + pil i,

dt *ox " dy © oz (10.16)
_d_ﬁ+ +i(nal’_tx_ n ‘2)4_1 Tlal’_tx_ AT +i(naﬁx_ AT )

ax | PE ox\ ox Pt oy\ ~ dy Pl doz\  dz Pt

2
Le terme 2 dans 1’équation 10.16 est non nul :
ab_‘x = 37!
T:na _puxu)r:Tlam+Tturb
y (10.17)

ou les contributions laminaires et turbulentes dominent a la paroi et loin de la paroi,

respectivement, comme schématisé a la Figure 10.4.

Outer
turbulent
layer

Overlap layer

Viscous wall layer

(a) )

Figure 10.4. Profils de cisaillement (a) de vitesse (b) d’un écoulement turbulent au voisinage de la paroi [F.
White, Fluid Mechanics].

La difficulté pour résoudre 1’équation 10.15 a conduit Prandtl vers 1930 a formuler des
hypothéses sous la forme de la fonction #(y). En considérant que I'on a # = f (U,TW,P,}’)

comme on peut le voir a la Figure 10.4, on définit une vitesse normalisée :

u
u =—

<
~

(10.18)

1/2
(2
.=
p (10.19)



Rhéologie 10.7

représente une vitesse de frottement. On dit alors que :

o)
v (10.20)

ou v= n/p est la viscosité cinématique. Dans la zone turbulente loin de la paroi # ne dépend

pas de 77 mais de la vitesse au loin, U et de I’épaisseur de la couche visqueuse o':

U—b_t=g(5,1'w,p,y) et ﬂ=G(lj
(10.21)

Par exemple :

(10.22)

Cette loi logarithmique traduit les tAtonnements empiriques de la science au 19°™ siécle et

donne de bons résultats pour les valeurs des parametres k= 0.41 et B =5 (Figure 10.5).

30 25

Outer law profiles:
Strong increasing pressure

25 — Pipe flow
Strong decreasing pressure

20 — Linear ut=y+
viscous
sublayer, ’

Eg. 62— |
V15— /

* /
= Logarithmic
overlap [

Eq. (6.21)
10 — \///

7

Experimental data

0 | |
| | 1 10 100 1000

1 10 102 103 104 +

+o yu* y = yM//V

Figure 10.5. Analyse expérimentale des lois de transition (a gauche, [F. White, Fluid Mechanics]) et détail de la
relation logarithmique entre la vitesse normalisée de 1’écoulement u- et la distance normalisée a la paroi y-.
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Rappelons que ’on cherche une relation entre la perte de charge et le débit, donc entre le
frottement et Re. Testons 1’expression logarithmique 10.22 dans le cas d’une conduite

tubulaire, avecy =R —r:

(10.23)
On calcule alors la vitesse de 1’écoulement :
R
V= —iz = —;2 [Fu(r)2zrar= %uf[zln{ﬁ}uls—i]
e T ey K (10.24)
Et avec k=0.41 et B =5 on obtient :
R
Y o ou4 1n{ﬁ}+1.34
4 v (10.25)
Par ailleurs, en combinant les équations 10.8 et 10.19 on a :
v_ 3
up NS (10.26)
Finalement, en 1935 Prandtl réécrit la loi logarithmique en log,, ce qui donne :
1
T 1.991og{Re,/f }-1.02
f (10.27)

Cette relation relie le frottement au nombre de Reynolds de I’écoulement. Prandtl ajuste les
facteurs numériques et corrige 1’équation logarithmique sous la forme suivante, qui décrit

I’écoulement turbulent dans des conduites lisses :

=210g{ReD\/7}—0.8

-

(10.28)
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Les profils de vitesse correspondants aux cas laminaire et turbulent sont schématisés a la
Figure 10.6, le cas turbulent étant reli€¢ aux équations 10.27 et 10.28. On constate que le profil
turbulent est aplati au milieu de 1’écoulement, ce qui ressemble au profil pour un fluide

rhéofluidifiant laminaire méme si les causes physiques sont différentes.

Umax Umax

laminaire : parabolique turbulent : profile plus plat au milieu

Figure 10.6. Profils de vitesse d’écoulement dans une conduite dans les cas laminaire et turbulent.

10.24 Influence de la rugosité des parois

Dans le cas d’un écoulement laminaire les parois ont peu d’effet. La vitesse a la paroi est en
général nulle et le profil de vitesse pour un fluide Newtonien est alors parabolique comme
démontré au Chapitre 8. Dans le cas d’un écoulement turbulent la rugosité de la paroi perturbe
I’écoulement et influence fortement le profil de vitesse. Cet effet a ét¢ mis en évidence par
Nikuradsé, étudiant de Prandtl, qui a analysé I’écoulement dans des conduites revétues de
grains de sable de rugosité calibrée. Il a mesuré AP et QO et en déduit la relation entre le

frottement f'et Rep. Ce résultat est montré a la Figure 10.7.

0.0163

M 0.00833
/ 0.00397

~
0.00198

L a

0.02 —

w
~

N Eq. (6.54
Eq. (6.550) S 659

S~

0.01

103 104 10° 100

Re,

(b)
Figure 10.7. Effet de la rugosité sur I’écoulement turbulent dans une conduite, avec décalage vers le bas et la
droite (a) et relation entre le frottement et le nombre de Reynolds en régimes laminaire, transitoire et turbulent
pour différents rapports rugosité/diametre de conduite &/D (b). L’équation 10.28 correspond a 1’équation 6.54 sur
le diagramme et u” = uy [F. White, Fluid Mechanics].
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On peut classifier les écoulements comme suit :

- eulv<S lisse
- S5<ewlv<io transitoire
- sudv>70 rugueux

A trés haute vitesse, pour Rep ~ 10°, i.e., dans le cas rugueux f devient constant, ce qui
correspond a une chute de pression constante. On définit la rugosité normalisée : € = éeu, /v

La zone rugueuse est décrite en adaptant la loi logarithmique :

u+zllny++B—AB=llnX+8.5 Aleln8+—3.5
K K £ ou K (10.29)

soit :

Y o paamPi32
iy € (10.30)

conduisant a :

(10.31)
qui ne dépend que de £/D, et pas de Rep.

10.2.5 Diagramme de Moody

En 1939 Colebrook reprend les travaux de Nikuradsé avec de vraies conduites. Il interpole les

équations ‘lisse’ (10.28) et ‘rugueuse’ (10.31) et aboutit au résultat :

L=—2log{£/D+ 2.51 }
VI 37 Repf (10.32)
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Ce résultat majeur en mécanique des fluides, avec une précision d’environ 15% est représenté
sous la forme d’un abaque par Moody en 1944 montré a la Figure 10.8. Ce diagramme permet
de dimensionner des tuyaux, et, par exemple, de déterminer le niveau de rugosité limite pour
permettre un débit donné. Ces résultats importants sont utilisés pour la conception de surfaces
micro- et nano-structurées afin d’influencer 1’écoulement via la couche visqueuse (effets

‘shark skin’, €éoliennes, capillaires pour applications en biotechnologies).

L’équation (10.32) est difficile a résoudre pour f et une alternative explicite est due a

Haaland :

1.11
1 elD 6.9
——=-18logd| == | +=2=
Jf 3.7 Re,
(10.33)
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Figure 10.8. Diagramme de Moody [F. White, Fluid Mechanics].
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10.2.6 Conduites de section non circulaire

Plusieurs facteurs autres que la rugosité de la paroi ont une influence sur les processus de
dissipation dans un écoulement, en particulier la géométrie des conduites. Pour des conduites
de section non circulaires on recourt a la notion de rayon hydraulique illustrée a la Figure

10.9.

Q Aire A =nR? et périmétre P = 2nR

Rayon hydraulique équivalent R, = A/P

Figure 10.9. Définition du rayon hydraulique pour une conduite de section non circulaire.

Le diametre hydraulique Dy, = 4R, et non 2R), parce que (voir équation 10.5) :

LV?
4R, -2g

> 10

et h,=f
(10.34)

D’autres facteurs, comme la variation du diametre de la conduite comme dans le cas de
contractions, d’expansions, de coudes, de valves, etc. doivent étre pris en compte. Ceci peut
étre fait par 1’ajout de longueurs additionnelles AL, comme par exemple la correction de

Bagley dans le cas du rhéometre capillaire vu au Chapitre 9.

103 ECOULEMENT LIBRE AVEC CORPS IMMERGE ET COUCHE LIMITE

Des écoulements dits libres (sans paroi) avec corps immergés, également appelés écoulements
a couche limite sont omniprésents en pratique et donc en mécanique des fluides, comme par
exemple en aéronautique, mais également pour des procédés de mise en ceuvre par
imprégnation de renforts par des fluides visqueux, ou les procédés de dépdts chimiques en

phase vapeur (‘CVD’).
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10.3.1 Définition de la couche limite

Considérons le probleme schématisé a la Figure 10.10 d’une plaque de longueur L, de largeur
b et d’épaisseur tres petite dans un écoulement. Le fluide est ‘bloqué’ a la surface de la
plaque, et donc localement la situation est la méme que dans le cas de la conduite, et sa
vitesse croit progressivement pour atteindre la vitesse du fluide non perturbé a une certaine
distance de la paroi. On définit la couche limite comme le ‘lieu’ & x) ou la vitesse du fluide

u=0.99 wuy.

U
Turbulent
Laminaire (aplati avec
- —>/ (parabolique) couche limite)
B — » - _8_ -=
—_—
Ugp . ( //b ] ]
—

y
T

\ 4

\ 4

Figure 10.10. Ecoulements laminaires et turbulents perturbés par une plaque fine parallele a I’écoulement.

10.3.2 Equilibre des forces

Regardons la contrainte a la paroi 7, et la force de trainée (‘drag’) Farag :

\ dF'dra
=7,dS=1bdx dou —==10b

w

dx (10.35)

L’équilibre des forces est traité comme suit :

dF,

drag

Fi = %(mﬁ ) projetéselonx: F, = %( pVu)

(10.36)

ou V représente le volume de fluide compris dans le périmetre 1-4 représenté a la Figure

10.11.
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Y Streamline just
outside the
shear-layer region

UO
Oncoming _
stream -7 Boundary layer 3
parallel 1 7 where shear stress
to plat - is significant
o plate /// is significan /)
/ d 4
) X
0 - L

Plate of width b

Figure 10.11. Domaine d’intégration pour la résolution de la couche limite [F. White, Fluid Mechanics].

On réécrit 1’équation 10.36 :

drag

d
— d
= t!pudV +pU£u Z|

Et, selon le profil d’écoulement montré a la Figure 10.11 :

F

drag ~
1

h

—p (-

0

= —pJu(O;y)udA—p-!.u(L;y)udA

5
uo)bdy— pJ-u(L;y)u(L;y)bdy
0

5
= pugbh — pr-u2 (L;y)dy
0

Conservation de Ia masse

uyh =

ju(L;y)dy

d’ol I’équation proposée par Kdrmén en 1921 :

drag pbuo u Ly dy pr.

g
o]l

x=L

%

L;y)dy= pbj g (L3 )~

(10.37)

(10.38)

(10.39)

*(Lyy))dy

(10.40)
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et:

1 dFdrag 2 d‘l}
T, =7 —_ =Puy——
b dx dx (10.41)

Ces deux équations sont résolues sur la base d’hypotheses sur u, ou sur le terme ¥ comme

suit.

1033 Cas laminaire

Dans le cas laminaire le profil de vitesses u(x ;y) est parabolique, ce que Karman approxime :

2
6 0 (1042)
Ce qui permet d’obtenir les termes suivants :
2
s
Yly-0 (10.43)
2 2
o =phi 58 (0=25)
15 15 (10.44)
la couche limite laminaire :
o ;5 et Rex:—puox
*oVRe g (10.45)

ainsi que le coefficient de frottement de peau (‘skin friction’), analogue au coefficient de

frottement dans le cas de I’écoulement dans une conduite :

27 5073
= uv; ~ Re - \/Re
p x x (10.46)
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et le fameux coefficient de trainée qui, dans le cas d’un écoulement laminaire s’écrit :

_ Fdrag (L)
! pu’bL
2 (1047)
ce qui peut se généraliser pour tout corps de géométrie quelconque :
F‘dmg
D~ 2
2 puA (10.48)

ou A représente 1’une des aires suivantes :
- aire frontale, i.e. projection du corps perpendiculairement a I’écoulement, utilisée pour
des objets épais immergés, des automobiles, des missiles ...,
- aire de plan, i.e. projection de I’objet vu de dessus, utilisées pour des corps larges et
plats comme des aileset hydrofoils,

- aire mouillée, utilisée typiquement pour des bateaux

On définit de facon analogue le coefficient de portance C, lié a la force de portance (‘lift’) F,, :

_ Fy
- 2
zpuA (10.49)

L

Le Tableau 10.1 donne des valeurs de C, pour différentes géométries.

1034 Cas turbulent

Dans le cas turbulent le profil de vitesses u(x;y) est donné par la loi logarithmique (équation

10.22). La couche limite turbulente valable quand le corps n'est pas rugueux est donnée par :

x (10.50)

De nombreuses approximations ont été proposées pour calculer le coefficient de trainée C,
dans ce cas, et plusieurs valeurs sont reportées au Tableau 10.1. On constate par ailleurs que

C, ne dépend pas trop de Re en régime turbulent.
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Tableau 10.1. Coefficient de trainée de corps bidimensionnels pour Re > 10%.

Cp based Cp based Cp based
on frontal on frontal on frontal
Shape area Shape area Shape area
Square cylinder: Half-cylinder: Plate:
B 2.1 B CI 1.2 —_— H 2.0
Thin plate
—_ 1.6 E— D 1.7 normal to
a wall:
Half tube: Equilateral triangle: E— L4
R C 1.2 e 1.6
Hexagon:
— > 23 — l> 2.0 —_ <:> —10 10.7
Shape Cp based on frontal area

Rounded nose section:

> H L/H
Cp:

i

- | os

| 10 | 20 | 40 | 60

| 116

| 09 | 070 | 0.68 | 0.64

| 07 | 12| 20 | 25 | 30 | 60

| 27 | 21 | 18 | 14 | 13 | 09

0.3

0.2

L
Flat nose section
ve: | o1 | 04
> Ho T 119 |23
L
Elliptical cylinder: Laminar Turbulent
1.1 ——> @ 1.2
21— O 0.6
41— > 0.35

8l — > — 0.25

0.15

0.1
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11 CHEMORHEOLOGIE

11.1 INTRODUCTION

La chémorhéologie est, comme son nom l'indique, la rhéologie des systemes qui réagissent
chimiquement. Un exemple typique et d'application courante est celui des résines
thermodurcissables, qui réticulent sous I'action de la chaleur et du temps, ce qui s'accompagne
d'une augmentation considérable de la viscosité : le matériau passe de 1'état liquide a I'état
solide. En général, en rhéologie des liquides, on développe des techniques de mesure et
d'analyse qui nécessitent de maintenir I'échantillon a la température désirée pendant un certain
temps, au cours duquel on peut faire varier la fréquence de sollicitation, son amplitude, etc...
Dans le cas de systemes réactifs, on ne peut se permettre ceci, car la réaction avance au cours
du temps et entre en compétition avec le temps nécessaire pour faire une mesure. Il faut donc

développer de nouvelles approches.

Les applications sont nombreuses dans le domaine de la mise en ceuvre des composites et des
polymeres, mais il existe aussi de nombreux exemples dans ceux de la nourriture ou de la
biologie. Par exemple, la mise en ceuvre des composites par moulage par transfert de résine
(Resin Transfer Molding, RTM) consiste a injecter une résine polyester ou époxyde dans un
moule qui contient déja les fibres assemblées en une préforme. On veut €tre slir que la résine
est suffisamment fluide quand on l'injecte et qu'elle le reste pendant tout le temps que dure
I'imprégnation des fibres. Ensuite, il faut que la viscosité de la résine monte, jusqu'a ce que 1'on
ait une piece assez solide pour pouvoir la démouler. Il est donc primordial, pour optimiser les
parametres de mise en ceuvre, tels que la température ou la pression d'injection (qui dicte la
vitesse de remplissage), de connaitre précisément comment évolue la viscosité de la résine avec
le temps et la température. D'autre part, chauffer davantage la résine baisse sa viscosité en un
premier temps, ce qui rend l'infiltration plus rapide, mais cela augmente la vitesse de

réticulation, donc la viscosité évoluera plus vite. Il faut donc trouver 1'optimum.

D'autres exemples plus pratiques se trouvent dans la vie de tous les jours. Quand on fait cuire
un ceuf, le blanc réagit chimiquement sous l'action de la chaleur pour réticuler et devenir un
solide. Le lait fermente sous I'action des levures pour former un gel que I'on appelle yaourt. La

farine et le lait, sous l'action de la chaleur, subissent une réaction de Maillard pour former un
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solide que I'on appelle sauce blanche ou flan, suivant I'application et les quantités en jeu. La

chémorhéologie est donc 1'étude d'éléments essentiels de la vie courante.

11.2 RAPPELS SUR LA RETICULATION DES THERMODURCISSABLES

1121 Chimie de la réaction

Les résines thermodurcissables, par opposition aux thermoplastiques, sont des résines qui
réagissent au cours de leur mise en ceuvre pour former des liaisons chimiques irréversibles. Le
matériau ne peut plus étre fondu quand on le chauffe, il peut seulement devenir caoutchoutique

et/ou se dégrader. Quelques exemples sont donnés ci-dessous :

a) Une résine époxyde réticulée est constituée d'un monomere, par exemple un bisphénol A
avec des groupements époxydes, et d'un durcisseur (le plus souvent une amine ou un
anhydride). Ces deux composants sont montrés a la Figure 11.1. IIs réagissent pour ouvrir le
groupement époxyde et former des liaisons chimiques. Au fur et a mesure de la réaction, de

plus en plus de liaisons chimiques se forment, et un réseau tridimensionnel se met en place.

HC — CH — R —CH — CH,

\ / N/ époxyde
(0) (0}
(0]
VRN

0= C\ /C =0

CH — CH

/ \ anhydride

CH, CH,
\ /
CH, — CH,

Figure 11.1. Exemple de structure chimique d'une résine époxyde, ou R représente deux groupements phénol, et
d'un durcisseur anhydride.

b) Une résine polyester, souvent utilisée pour faire des coques de bateau, des pieces de
carrosserie automobile (Sheet Molding Compound), réticule apres adjonction de styréne comme
le montre la Figure 11.2. Comme toute réaction chimique, la réticulation d'un
thermodurcissable est activée par la température suivant une loi d'Arrhenius. De plus, on peut

quantifier I'avancement de la réaction en mesurant le degré de réticulation o :
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AH

o (11.1)
AHTOT

ou AH est la chaleur de réaction mesurée par calorimétrie différentielle a balayage (DSC) a

I'instant t, et AHror est la chaleur de réaction totale.

.4..00(i) (‘)OO-CHz-CHz-O/OC
CH=CH CH=CH CH=CH +n‘{CH2=C\H] | |
N\
COO-CH,-CH,-00C C00... O @‘?H @‘?H ,
CH CH < >7CH
Polyester Styrene 2 r2 |
....CH-(IIH-COO-CH2~CH2—OOC-(IJH-CH-COO-CHz-CHz-OOC-((:H-CH,...
I O O &,
?Hz Hy lCH
—CH
Styrene O i
Polyester
CH
¢ CH
% %
fe) - ....iCH-CH-COO-CHZ-CH2~OOC-CH-$)H We ,.
H—cH CH R A A
' ' NS s e/
Pt CHy SO R

Figure 11.2 Représentation symbolique et schématique d'un polyester insaturé non-réagi (a gauche) et réticulé (a
droite), d'aprés Osswald.

Un exemple de thermogramme DSC est donné a la Figure 11.3. Celui-ci représente le flux

thermique, soit dH/dt, en fonction du temps. La chaleur de réaction au temps # est donnée par

l'intégrale sous la courbe jusqu'au temps ¢, soit :

1,

AH = [ 4 (112)
o dr

12

Heat flow {J/s*g}

—.100°C
Smmme e 90 °C
~ Tt e--ll -
—_—— . —
4 6 8 10

Time (minutes)

Figure 11.3. Thermogramme (courbe de calorimétrie différentielle) montrant le flux de chaleur en fonction du
temps pour la réticulation isotherme d'un vinyl-ester a différentes températures.
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Le degré d'avancement suit en général une loi du type autocatalytique :

da EN a oy
E—koexp(—RT}a (1 a) (11.3)

ou ko est la constante cinétique, E I’énergie d’activation, R la constante des gaz parfaits, T la

température en Kelvin et n et m des parametres appelés ordres réactionnels.

On peut donc en général connaitre, pour une température donnée, le degré d'avancement

chimique de la réaction en fonction du temps.
1122 Rhéologie de la réaction

Le mélange de départ est en général un liquide Newtonien (viscosité basse), constitué de petites
molécules qui sont les unités de base du polymere. Au fur et 2 mesure que la réaction progresse,
la masse moléculaire croit pour atteindre I'infini (dicté en fait par la taille de 1'échantillon) et le
liquide se transforme en solide. A la fin de la réticulation, on est en présence d'un solide visco-
élastique. Entre les deux, on a un matériau qui exhibe les propriétés du solide et du liquide, que

I'on appelle un gel, comme indiqué sur la Figure 11.4.

Liquide viscoélastique Solide viscoélastique
i Réaction
i — chimique
Liquide Newtonien Point de gel Solide Hookéen
. . d
T=1)y r=8J(t-0) 2 )t T=Gy

Figure 11.4. Evolution des propriétés d'une résine au cours de la réaction de réticulation, 7 est la viscosité, S la
résistance du réseau au point de gel et G le module de cisaillement.

La gélation ou le point de gel correspond a la formation d'un réseau infini tridimensionnel. C'est
donc le point de transition entre le liquide et le solide. La viscosité tend vers 1'infini et on

commence a pouvoir mesurer le module de Young du matériau.
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Le temps de gel, pour une réaction a une température constante donnée, peut tre calculé, car il
correspond a un taux de conversion bien précis, qui est fonction de la fonctionnalité des
matériaux en présence. Par exemple, typiquement pour un époxyde, le taux de conversion a
gélation est aux environs de 70%. Ce qui veut dire que le réseau est déja tridimensionnel, mais
la réaction n'est pas encore finie, et il reste encore des liaisons époxydes a ouvrir. Le matériau
continue donc d'évoluer chimiquement, ce qui contribue a augmenter ses propriétés

mécaniques, qui seront maximales quand la conversion est totale.

Une autre grandeur importante a mentionner, qui n'est pas liée a proprement parler a la réaction
chimique, mais qui est liée au fait que les matériaux thermodurcissables forment un réseau
réticulé amorphe, est la transition vitreuse. Quand on refroidit un matériau amorphe, il ne
cristallise pas a une certaine température, mais il passe a un état vitreux. Cet €tat est un état
solide, mais correspond en fait a une structure liquide figée. Pour une résine thermodurcissable,
le mélange de départ entre le monomeére et le durcisseur est constitu¢ de petites molécules et
est souvent liquide a température ambiante, mais possede une température de transition
vitreuse, Tg (appelée Tyo), en dessous de laquelle la résine est un solide vitreux non-réticulé.
Quand la réaction progresse, les molécules deviennent plus grosses, donc plus faciles a figer,

et donc T, augmente. Quand tout le matériau est réticulé, T, est maximale et est appelée Tge.

Au cours d'une expérience de réticulation isotherme, comme T, croit avec le taux de conversion,
il arrive un moment ou T, devient égale a la température de cuisson : on est alors au temps de
vitrification. En fonction du matériau et de la température de l'expérience, on atteint la
vitrification avant (sol vitreux) ou apres la gélation (sol-gel vitreux) comme nous le verrons
plus en détails a la Section 11.4. En général, on essaie de se placer dans un domaine ou la
gélation intervient avant la vitrification, sinon les propriétés mécaniques du matériau ne sont

pas trés bonnes.

113 MESURES RHEOLOGIQUES SUR DES SYSTEMES REACTIFS

11.3.1 Le probleme

Il existe des méthodes spécifiques pour mesurer les propriétés rhéologiques des liquides et des

solides, vues au Chapitre 9. Le probleme, avec la chémorhéologie, est que I'on couvre une tres

large gamme de viscosité et de module quand on passe du liquide au solide, comme montré sur
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la Figure 11.5. On peut donc mesurer indépendamment la viscosité, jusqu'a la limite de
l'instrument ou la rupture de I'échantillon, et puis on peut ensuite mesurer le module sur le
solide. Mais il reste alors une grande incertitude sur le temps de gélation, car aucune de ces

méthodes ne peut étre utilisée au voisinage du temps de gel.

|
Liquid | Solid /

‘ %

n’Gm

log N, Gy

7

te
AEACTION TIME

Figure 11.5. Schéma de I'évolution de la viscosité en cisaillement continu et du module d'équilibre d'un polymere
qui réticule.

11.3.2 La méthode

La méthode couramment utilisée est d'effectuer un cisaillement oscillatoire de petite amplitude

sur la résine maintenue dans le four d'un rhéometre a plaques paralleles et de mesurer les
modules G', G", leur rapport tan(d ) (voir Chapitre 3) et la viscosité. On applique une

déformation :

y = Asin(wt) (11.4)
et on enregistre une contrainte déphasée d'un angle de déphasage o :

T=T1, sin(wt+ 6) (11.5)
Les modules de cisaillement ont donc une composante en phase, dite d'élasticité :

G' = cos(8) = (11.6)

Y

et en opposition de phase, dite visqueuse ou de perte :

G- sin(é)-yz (11.7)
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Le module complexe est alors :
G =G +G"” (11.8)
Il en est de méme pour la viscosité :
G!
n=— (11.9)
)
n' = s (11.10)
)
. G
n =— (11.11)
)
L'angle de déphasage est alors facilement calculé par :
tan(6 ) = = (11.12)

G/

Des courbes de réponse typique sont données a la Figure 11.6. Au début, la viscosité et les

autres parametres baissent, car on est en phase de chauffe de I'échantillon, puis la température

se stabilise a la valeur désirée. On observe qu'au bout d'un certain temps a la température T

choisie, le module de perte G" augmente fortement, suivi de G' et de la viscosité. Cela

correspond aussi a une évolution de tan(0), et représente le fait que 1'on atteint la gélation.

Ensuite, G' et G" se stabilisent, et G" décroit au moment ou la vitrification se produit. Un

deuxieéme pic de tan(0) est aussi observé quand G" cesse de croitre fortement. On observe ainsi

I'évolution en continu des grandeurs caractéristiques de la résine au cours de la réticulation.
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GG & A
et G tan(d)
n*
G
tan(d)
-
Temps [s]

Figure 11.6. Exemple de réponses obtenues en cisaillement oscillatoire entre des plaques paralleles.

Une méthode similaire, trés employée dans le cas des composites, est de placer la résine sur
une meche de fibres, qui est ensuite fixée par ses deux extrémités a des mors, que I'on sollicite
de méme en torsion oscillatoire de faible amplitude, voir Figure 11.7. Les réponses sont
semblables, I'avantage de cette méthode est que 1'on peut tester des résines déja imprégnées sur
les fibres par le fabriquant, et que 1'on peut mesurer un module des le début de l'expérience, car
les fibres conferent une rigidité mécanique a l'ensemble. Le probléme est que 1'on ne mesure

pas les grandeurs intrinseéques de la résine quand on utilise une telle méthode.

DRIVE GEAR TRAIN
ALIGNMENT
' AND
ATMOSPHERE INITIATION

PORT —— MECHANISM

|/~ SUPPORTING RoC

}~ TEMPERATURE
#|  conTroLLED

ENCLOSURE

[T-EXTENDER ROD

[~ SPECIMEN

LIGHT SOURCE

WiNDOW
I I POLARIZER
¥ :POLARIZER

ATMOSPHERE
PORT

VACUUM
PHOTOTUBE

AMPLIFIER

CONTROLLER
AND DATA
ANALYZER

XYy
PLOTTER

Figure 11.7. Diagramme schématique d'un pendule de torsion automatique pour les essais de torsion sur meche.
Un signal électrique analogue résulte de I'utilisation d'un rayon de lumiere qui traverse une paire de polariseurs,
dont un oscille avec 1'échantillon.
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1133 Mesure du temps de gel

A partir des courbes de la Figure 11.6, on peut dire que le temps de gélation est atteint quand
la viscosité ainsi que les modules augmentent brutalement. Pour obtenir une valeur précise, il

existe plusieurs approches qui sont souvent utilisées :

- le premier pic de tan(o) correspond a une augmentation brutale du déphasage, donc au
passage de 1'état liquide visqueux a I'état solide viscoélastique.

- le point d'intersection de G' et G", qui correspond a tan(d) = 1, peut aussi tre pris comme
point de gel, car il correspond au moment ou la partie élastique du module prend le pas
sur la partie visqueuse. Cette méthode est préconisée par la norme ASTM.

- le moment ou la viscosité dépasse une certaine valeur, par exemple 100 Pa.s est parfois

pris comme temps de gel (méthode pratique en milieu industriel).

Ceci dit, le temps de gel ne devrait pas étre fonction de la fréquence de sollicitation, a moins
que la fréquence ne soit trop rapide et que la réaction chimique ne soit modifiée par le
cisaillement, ou que l'on ait interférence avec un autre phénomene, tel que la vitrification.
Cependant, les méthodes présentées ci-dessus donnent des résultats qui souvent peuvent varier
avec la fréquence. Une troisieme méthode, préconisée par Chambon et Winters permet de
détecter de maniere plus "scientifique" le point de gel, en faisant la mesure a trois fréquences
différentes, et en prenant le point d'intersection de tan(o) pour les trois fréquences, en fonction
du temps. La raison pour laquelle cette méthode est préconisée est rhéologique : au point de
gel, comme montré sur la Figure 11.8, la résine a un comportement de type loi de puissance, et

G' et G" sont donc des droites dans un diagramme log-log en fonction du temps.
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Figure 11.8. Modules d'élasticité et de perte (réduits) pour des échantillons de polydimethylsiloxane (PDMS) pour
lesquels la réaction a été stoppée a des étapes intermédiaires de la conversion. T. est l'instant correspondant au

point de gel. Les courbes sont décalées d’une valeur A, pour qu'elles ne se superposent pas sur le dessin (Winter
et Chambon, 1987).

1134 Mesure du temps de vitrification

Il existe plusieurs méthodes de détection de la vitrification a partir de la réponse rhéologique
(Figure 11.6). Cette détection reste toujours un peu difficile car la vitrification ne correspond
pas vraiment a un changement important des propriétés rhéologiques de la résine, comme 1'était
le point de gel. En général, on peut dire que I'on atteint 1'état vitreux quand le module de perte
G" cesse d'augmenter et commence a décroitre, ce qui veut dire que la partie visqueuse du
module perd de l'importance. Ceci peut correspondre a un second pic de tan(0). Trois criteéres

pour déterminer la vitrification ont été proposés :

- pic de tan(d) a une fréquence de 1 Hz,
- maximum de G" a 1 Hz,

- début ou fin de la dépendance en fréquence de G' (ce critere implique que la gélation

survienne avant la vitrification).

114 LE DIAGRAMME T-T-T

Une fois que 1'on est capable, pour une expérience de réticulation isotherme, de déterminer quel

est le temps de gel, quelle est 1'évolution de la viscosité, et quel est le temps de vitrification, on
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peut commencer a construire un diagramme qui donne I'évolution de ces temps et de la viscosité
pour chaque température. On peut rendre ensuite ce diagramme plus complet en ajoutant les
valeurs des températures de transition connues. Cela donne finalement un diagramme Temps-
Température-Transformation (TTT), proposé par Gilham dans les années 80, similaire aux
diagrammes TTT rencontrés en métallurgie. La Figure 11.9 donne un exemple d'un tel

diagramme complet.
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Figure 11.9. Diagramme Temps-Température-Transformation pour un syst¢éme polymere thermodurcissable
réactif montrant les différents états rencontrés durant une réticulation isotherme (Gilham).

On distingue plusieurs états : liquide, verre non gélifié, verre gélifié, sol-gel caoutchoutique,

élastomere, matiere carbonisée (char). On distingue aussi plusieurs températures vitreuses

caractéristiques :

- Tgo est la température de transition vitreuse du mélange non réagi,
- gelT,; est la température pour laquelle le temps de gélation est égal au temps de
vitrification,

- Tgw est la température de transition vitreuse pour le matériau complétement réticulé.

La ligne de réticulation compleéte (full cure) représente la ligne pour laquelle T = Tgw, et sépare
la région de gel vitrifié en sol-gel vitrifié, et gel vitrifi¢ (au-dessus). La ligne de dévitrification
correspond a la ligne ou Ty passe en dessous de Tcuisson, €t correspond a une dégradation du

matériau.
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Des lignes de contours iso-viscosité sont aussi représentées dans la zone liquide. Ces lignes
sont espacées d'un facteur 10. Le diagramme montre aussi en pointillés le temps de séparation
de phase. Ceci arrive quand une deuxiéme phase est préalablement dissoute dans le matériau,
qui se sépare pendant la réticulation, si possible avant la gélation. Ce cas est courant pour des

époxydes ou on introduit une phase caoutchoutique pour améliorer la ténacité.

Ce diagramme est pratique pour déterminer la fenétre de mise en ceuvre d'une résine. Il faut en
général se placer entre gelTg et Tgw, pas trop au-dessus de Ty car la dégradation risque de se
produire. Grace au diagramme, on peut déterminer, pour une température donnée, quand arrive
le temps de gélation, et le temps de vitrification, et & peu prés comment évolue la viscosité. On
voit bien que plus la température est haute, plus la viscosité sera basse, mais plus les temps

seront courts.
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12 PHENOMENOLOGIE DES SUSPENSIONS ET EMULSIONS

12.1 PHENOMENOLOGIE

Une suspension est une dispersion de particules solides dans un fluide. Selon la concentration
et la géométrie des particules on parle de suspensions diluées, semi-concentrées ou concentrées.
On retrouve des suspensions dans de trés nombreuses situations, en particulier dans les
domaines alimentaire (pates), de la construction (béton), ou de la biologie (sang). La rhéologie
des suspensions présente des comportements riches et complexes liés a la taille et a la forme

des particules et aux interactions fluide-particules et entre les particules elles-mémes.
12.1.1 Classification et typologie
Les liquides peuvent étre divisés en sous-classes de liquides qui peuvent a leur tour étre divisées

et ainsi de suite. Une telle classification incluant les suspensions est représentée a la Figure

12.1.

Liquide
Homogene Hétérogene |
Suspensions Suspensions Autres
macroscopiques colloidales brouillard
\ M mousses

Newtonien| |N0n-newtonien Suspensions| |Suspensions| |Suspensions /| [Emulsions| |Autres

diluées concentrées dispersions
‘molécules ‘longues molécules’ milk-shake béton sang mousse plancton
sphéri(rlfu?ts’ poll.yméres fondus dentifrice ri%talf lait ‘ encre - margarine sperme
az parfai salive dtea papier compositesa .
gau ’ ’ - matrIi)ce SAUCISSE
polymere

Figure 12.1. Une des classifications possibles des liquides.

Selon la taille des particules, les suspensions peuvent étre classées en deux grandes catégories :

les suspensions colloidales ou la taille des particules est inférieure a 1 um et les suspensions
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macroscopiques qui sont constituées essentiellement d’inclusions dont le diametre est supérieur
a 1 um. Il existe d’autres criteres de classification, tels la concentration, le type de suspension,

la réactivité, etc...

La présence d'une phase en suspension affecte la rhéologie du liquide de deux fagons, formant

la base de deux approches analytiques décrites comme suit.

12.1.2 Effets hydrodynamiques et formation de réseaux

Le premier effet li€ a I’ajout de particules dans un fluide est hydrodynamique et concerne dans
la plupart des cas des suspensions macroscopiques inertes. La Figure 12.2a illustre un champ
de vitesse d’un écoulement homogene, et la Figure 12.2b un champ de vitesse d’écoulement
perturbé par une seconde phase (suspension). Les caractéristiques de la suspension qui affectent

le comportement de la solution sont :

- la concentration — interaction mécanique entre particules aux concentrations élevées,
- la forme des particules (facteur de forme, rapport de dimensions, convexité),
- la polydispersité (les particules ont des tailles différentes),

- le rapport entre la taille des particules et celle du canal d’écoulement.

La Figure 12.2 suggere que pour comparer la viscosité de suspensions de concentrations
différentes, il faudrait les représenter sur un graphe qui montre la viscosité en fonction de la
contrainte et non du taux de cisaillement. En effet, la vitesse de cisaillement locale est
discontinue dans le fluide et différente d’une concentration a I’autre, ce qui n’est pas le cas de

la contrainte.

u u
(a) (b)

Figure 12.2. Champs de vitesse d’écoulement (a) pour une solution homogene et (b) pour une suspension.

Le deuxieéme effet est la formation d’un réseau qui se crée dans des suspensions non-inertes ou

des suspensions inertes fortement concentrées comme décrit a la Figure 12.3. Ce réseau, dans
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le cas non-inerte, est constitué de liens déformables qui lient les particules entre elles. Dans le
cas de suspensions inertes, le contact entre les particules présentant un coefficient de frottement

élevé provoque la formation d’un réseau.

1K
liens déformables points de contact

AN

particule fibre

() (b)

Figure 12.3. Représentation schématique d’une suspension (a) non-inerte et (b) inerte formant un réseau.

Les caractéristiques qui déterminent le comportement de la suspension sont :

- sa stabilité dans le temps,

- la géométrie des agrégats et flocons,

- les propriétés des liens entre les particules,

- la steechiométrie, la géométrie des phases, miscibilit¢ (émulsions, mélange de
polymeres),

- la solvatation/I’adsorption.

12.2 INTERACTIONS ET STABILITE DES SUSPENSIONS

Les particules en suspension interagissent par le biais de forces de natures différentes. Les
interactions qui apparaissent entre les particules d’une suspension concentrée sont diverses. On
distingue les forces de répulsion comme les interactions de spheres dures, correspondant au
fait que les particules solides ne peuvent pas s’interpénétrer, la répulsion électrostatique, les
forces attractives de Van der Waals ainsi que les interactions browniennes résultant de
I’agitation thermique et finalement les interactions hydrodynamiques. Du fait de ces forces, les
particules se distribuent localement et collectivement selon une configuration instantanée
particuliere. Le comportement macroscopique de la suspension dépend par conséquent des
variations des intensités des forces entre particules qui évoluent avec la configuration moyenne

au cours de I’écoulement.
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122.1 Forces de répulsion

Les interactions de sphéres dures

Les interactions de spheres dures sont des forces répulsives a courte portée qu’exercent les
particules solides les unes sur les autres du fait de leur impénétrabilité. On représente ces forces
avec un modele de « coeurs durs » pour lequel 1’énergie potentielle est nulle si la distance bord

a bord est positive et infinie si cette distance est nulle.

La force de répulsion stérique

La force de répulsion stérique est due a 1’adsorption de molécules a la surface des particules.
Ces molécules peuvent étre des polymeres ou des agents tensioactifs. La répulsion a deux

causes :

- la pression osmotique liée a la présence d’une concentration élevée d’éléments de la
chaine du polymere adsorbé dans la région de recouvrement entre deux particules assez
proches.

- la diminution du nombre de configurations possibles des molécules adsorbées dans la

région de recouvrement.

Les forces de déplétion

Les forces de déplétion se rencontrent dans le cas de suspensions contenant surtout des
particules de tailles différentes. Considérons le cas de la suspension bidisperse ou les grosses
particules sont entourées par d’autres particules bien plus petites et plus nombreuses qu’elles
comme montré a la Figure 12.4. Tant que les grosses particules restent isolées, elles sont
bombardées par les petites sur toute leur surface. La pression osmotique exercée par les petites

particules est partout égale sur la surface des grosses.

Si deux grosses particules s’approchent d’une distance inférieure au diametre des petites, ces
dernieres exercent une pression a la surface des grosses sauf dans la région ou elles ne peuvent
pas passer. Il en résulte un défaut de pression dans la région vide de petites particules, ce qui
tend a rapprocher encore plus les grosses et il en résulte une force attractive entre elles. Le

méme phénomene se produit lorsqu’une grosse particule vient assez pres d’une paroi.
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Figure 12.4. Représentation des forces de déplétion dans le cas d’une suspension bidisperse.

1222 Le mouvement brownien

Les molécules du fluide suspendant sont animées d’un mouvement dii a 1’agitation thermique.
Ces molécules échangent de I’impulsion avec les particules solides au cours des collisions
qu’elles subissent. La quantité d’impulsion échangée par unité de temps c’est a dire la force
que le fluide exerce, par I’intermédiaire de chocs, sur la particule est une quantité qui fluctue

au cours du temps mais possede une valeur moyenne nulle.

Dans le cas ou les particules en suspension sont suffisamment petites (d < 1xm) ces collisions
peuvent entrainer une série d’accélérations et donc une série de déplacements aléatoires des
particules. Ce mouvement tend a éloigner les particules solides en suspension de leurs positions

initiales méme en absence d’écoulement macroscopique.

Le mouvement brownien est caractérisé par un coefficient de diffusion D, introduit par Einstein
en 1905, sous la forme du rapport entre 1’énergie d’agitation thermique k7 de la suspension et
d’un facteur de trainée visqueuse (Stokes) qui dépend de la taille des particules, a, ainsi que la

viscosité 7 du fluide :

_ kT
6mna

D (12.1)

Ainsi le coefficient de diffusion augmente quand la taille des particules diminue. Cette approche

est pertinente pour décrire I’homogénéisation au cours du temps des suspensions colloidales
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1223 Les interactions de van der Waals

Les forces de van der Waals résultent des fluctuations thermodynamiques du champ
électromagnétique a I’intérieur et autour des particules. En effet, les atomes induisent les uns
sur les autres des moments dipolaires et les moments induits engendrent une interaction
attractive entre les atomes. La portée de cette force attractive ne dépasse pas quelques dizaines
de nanometres. En premiere approximation et pour deux spheres de diametre d et séparées d’une

distance h cette force s’écrit :

Foy = -A 24‘;2 (12.2)

ou A est la constante de Hamaker relative aux deux milieux (particules et fluide) et varie entre

10~J et 10+J, de I’ordre de 1’énergie thermique a la température ambiante k7.

1224 Les interactions hydrodynamiques

L’effet de ce type d’interactions est fondamental puisqu’il provient du simple fait de la présence
des particules au sein de la suspension. Sous écoulement, chaque particule induit des
perturbations du champ de vitesse qui sont d’autant plus importantes que I’on se trouve pres
d’elle. Ainsi le fluide en écoulement exerce une force sur chaque particule compte tenu de la
présence des autres. Ces interactions sont complexes et dépendent du type d’écoulement
imposé, de la nature du fluide suspendant ainsi que de la distribution spatiale des particules.
Les forces hydrodynamiques sont des forces de dissipation visqueuse. Nous précisons par la
suite 1’importance de ces interactions par rapport aux interactions browniennes et colloidales

dans nos expériences.

Comparaison avec les interactions browniennes

Le nombre adimensionnel (Cf. Chapitre 1) de Péclet compare les effets de 1’énergie liée au

mouvement de convection caractéristique d’une particule dans le fluide a ceux de son énergie

thermique :
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_ convection _6mna-ya-a _6xnya’
diffusion kT kT

Pe (12.3)

L’énergie de convection d’une particule de taille a soumise a une force hydrodynamique est le
produit de la force F=6xnavouv=ya et de la taille de la particule. Une valeur de Pe
élevée indique que le transport de particules par diffusion brownienne est négligeable par

rapport au transport par convection, comme schématisé a la Figure 12.5.
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Figure 12.5. Domaines de prédominance entre interactions de type Brownien (agitation thermique) et
hydrodynamiques, en fonction du nombre de Peclet.

Comparaison avec les forces de van der Waals :

Le rapport des interactions hydrodynamiques et de Van der Waals fait apparaitre un nombre

sans dimension Nsaw, qui mesure I’importance relative de ces deux effets :

N _ hydrodynamique | 6znaya 2an |- nya’ h_2
Y van der Waals Ad A ad (12.4)

ou A est la constante de Hamacker dont la valeur est de I’ordre de I’agitation thermique k7. Au
cours d’une collision la distance minimale de séparation entre deux particules est donnée par la

taille des aspérités qui se trouvent a leur surface.
1225 Les forces électrostatiques

Lorsque des particules sont mises en suspension dans un fluide qui comporte des ions, une

charge électrique peut apparaitre a la surface des particules. Cette charge peut étre présente
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avant la mise en suspension des particules dans le liquide ou bien apparaitre apres la mise en
suspension. En effet, il peut y avoir soit dissociation de groupes de surface par le fluide, soit

adsorption d’ions de la solution dans le cas d’une solution ionique.

La double couche

Une particule chargée tend a s’entourer d’ions de signes opposés comme schématisé a la Figure
12.6. Ces ions diffusent sous I’effet de I’agitation thermique, de sorte qu’il existe autour de la
particule une distance de non-neutralité. L.’organisation spatiale des charges électriques sur la
particule chargée est appelée double couche électrique. L'adsorption d'ions ou leur

concentration accrue pres d'une surface crée un potentiel €électrique Wi qui forme une couche

électronique diffuse. Un tel potentiel est également décrit a la Figure 12.6.

potentiel ¥
) @®
@ e
Surface charge (negative)
/ @ O Stern Layer
ﬁ Slipping plane |
o o © |
@ ® :
5} |
@ ® @ :
. - Surface potential :
e ® ® y Stern potential l |
@ 5 M . / double
© S T potential / | SOlvant
@ e @ .......................................... lp ] COUChe |
Distance from particle surface 0 H%

Figure 12.6. Diagramme montrant la concentration ionique autour d’une particule dans un fluide (a gauche, source
Wikipedia) et évolution du potentiel électrique en fonction de la distance de la surface d’une particule chargée (a
droite).

Gouy et Chapman ont proposé, grace a certaines approximations simplificatrices, une

expression du potentiel électrostatique ¥ autour d’une sphere chargée, qui s’écrit :

Y=ye™ (12.5)

. / €,ekT > . _
ol k= # est la longueur de Debye, avec ¢ la constante di€lectrique du liquide, €9 la
nez

permittivité du vide, n la concentration en ions dans le liquide, e la charge unitaire et z la valence
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des ions. Cette longueur nous donne la portée de la répulsion électrostatique. Elle délimite un
volume autour de la particule au-dela duquel les autres particules n’interagissent pas de maniere

électrostatique avec la particule considérée.

Notons que dans le cas d’une suspension colloidale le nombre de Péclet s’écrit comme suit :

¥

Pe. =7 (12.6)

Considérons maintenant non plus une mais deux particules séparées d’une distance h. Lorsque
ces particules s’approchent I’une de 1’autre, une force répulsive se développe. Le calcul de cette
force est complexe. Toutefois, si la couche de Debye est petite devant le rayon a des particules
(xa >>1) et si la distance h les séparant est grande (kh >> 1), les interactions €lectrostatiques

décroissent de facon exponentielle :

2

F, zswz(i) e (12.7)

e
r

Pendant un écoulement, un plan de glissement hydrodynamique se forme entre la premiere
couche adsorbée et les suivantes. Le potentiel a ce plan est appelé potentiel z&éta ¢ ou potentiel

électrocinétique et se calcule avec la relation :

¢ = FullVe (12.8)
£.EFE

ou 7 est la viscosité de 1'électrolyte, v. est la vitesse d’électrophorese (déplacement de la
particule chargée sous champ électrique), E le champ électrique imposé et F,la constante
d’Henry. Le potentiel z€ta {'est un indice du gradient de potentiel électrique. L'interaction entre
deux doubles couches détermine l'attraction ou la répulsion entre deux particules. La Figure
12.7 représente le potentiel z€ta ainsi que la viscosité en fonction de la fraction volumique des
ions. Une suspension est généralement stable pour des potentiels zEta supérieurs a 25 mV, et a
I’inverse aura tendance a coaguler ou floculer pour des valeurs inférieures a 10 mV. Notons
que 1’électrophorese est une méthode d’analyse basée sur le fait que les seules forces subies par

le liquide en mouvement sont la force €lectrostatique directe et le frottement visqueux.
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Figure 12.7. Evolution de la viscosité et du potentiel z&ta en fonction de la fraction volumique des ions.

12.2.6 Coagulation et floculation

La coagulation est la déstabilisation d’une suspension colloidale par 1’utilisation d’un sel ou par
une modification du pH. La floculation est la déstabilisation d’une suspension colloidale par
I’utilisation d’un polymere ou d’un agent tensioactif. La stabilité d’une suspension colloidale

est contrdlée par :

- I’encombrement stérique,

- la valence des ions,

- la diélectricité du solvant,

- la présence ou I’absence de particules hydrophobes,

- I’épaisseur de la couche limite donc par x,

- le potentiel zéta C,
- le pH du solvant,

- la température.

Les systemes floculés ont un comportement non-newtonien dicté en grande partie par les
changements du réseau formé par les particules lors d'une déformation. Leur caractérisation
doit se baser sur une analyse des composants et de leur état de dispersion ou d’agrégation. La
Figure 13.2 regroupe les trois types d’interactions propres aux colloides : le recouvrement des

doubles couches, I’attraction polaire et I’attraction hydrophobe.
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Figure 12.8. Schéma de trois cas d’interactions : (a) le recouvrement des doubles couches, (b) I’attraction polaire
et (c) ’attraction hydrophobe.

¢

12.2.7 Bilan des forces d’interaction et théorie DLVO

L’une des plus importantes propriétés physiques des suspensions est leur stabilité dans le temps,
liée a la tendance des particules a former des agrégats par des processus de coagulation ou de
floculation. Ces agrégats ont une masse plus élevée que les particules individuelles qui les

constituent et ont tendance a sédimenter.

La stabilit¢ d’une suspension dépend de la somme de I’interaction des forces répulsives
(électrostatique, stérique et de déplétion) et des forces attractives (de Van der Waals, polaire)
entre ses particules. La Figure 12.9 représente les trois potentiels d’interaction présents dans les
suspensions colloidales ainsi que leur somme. Lorsqu’on fait le bilan global des interactions
entre deux particules on obtient une énergie potentielle d’interaction qui peut avoir en fonction
de la distance entre les particules des allures vari€es et ce selon I’'importance relative des
diverses composantes de cette énergie. Quand la distance entre deux particules diminue,
I’énergie potentielle augmente considérablement. La suspension reste stable tant qu’on ne
fournit pas aux particules une énergie (mécanique, thermique ...) supérieure a la barriere de

potentiel.
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Figure 12.9. Bilan des interactions entre particules dans une suspension en fonction de la distance entre particules.
On note V.. le potentiel attractif de van der Waals, V. le potentiel répulsif électrostatique et V. le potentiel de
répulsion de spheres dures. Le graphe de gauche montre les interactions fondamentales et celui de droite montre
leur somme.

La théorie DLVO (Derjaguin, Landau, Verwey et Overbeek) décrit 1’énergie potentielle
d’interaction entre deux particules en fonction de leur distance. Celle-ci diminue rapidement et
passe par un minimum qui correspond au contact entre les particules. Il y a alors agrégation et
formation d’amas de particules. Si 1’agitation thermique de la suspension ou les forces
répulsives sont suffisantes le phénomene d’agrégation est négligeable et la suspension reste
stable. Pour une distance plus grande, les particules peuvent aussi former des doublets tres
faiblement liés (minimum secondaire). Si I’énergie potentielle qui correspond a ce minimum
secondaire est supérieure a k7, il y alors floculation. Dans le cas ou I’énergie thermique
moyenne k7 est inférieure a la barriere de potentiel, ce mouvement aura pour effet de ramener

les particules dans des distributions spatiales plutdt isotropes.

1228 Synthése phénoménologique des écoulements de suspensions

La Figure 12.10 synthétise la richesse de comportements rhéologiques de suspensions de
particules solides dans un fluide, en fonction de la concentration des particules et du taux de
cisaillement appliqué a la suspension. Les transitions entre les différents régimes sont décrits
avec les nombres adimensionnels. Le nombre de Péclet, Pe, correspond a la transition entre les
régimes Brownien et hydrodynamique visqueux. Le nombre de répulsion Nr (rapport entre les
interactions de Van der Waals et 1’agitation thermique) correspond a la transition entre les
régimes Brownien et colloidal, lorsque la concentration de particules augmente (e.g., la distance
entre particules diminue). Les autres nombres adimensionnels montrés sur la figure sont le

nombre ', rapport des interactions visqueuses et colloidales, le nombre de Reynolds Re qui
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décrit la transition vers la turbulence, le nombre de Leighton Le pour la transition entre régimes
visqueux et de frottement, et le nombre de Bagnold Ba pour la transition entre régimes visqueux
et de collision. La concentration ¢, correspond a la concentration maximale dans le cas d’une
suspension aléatoire (¢, = 0.635 pour des particules sphériques monodisperses) et ¢. correspond
a la concentration minimale pour que des particules forment un réseau (¢ = 0.5 pour des

particules sphériques monodisperses).
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Figure 12.10. Diagramme synthétique des régimes d’écoulement de suspensions de particules solides dans un
fluide en fonction de la concentration de particules et de la vitesse de cisaillement appliquée a la suspension
(D’apres C. Ancey, EPFL).

123 EMULSIONS

Nous terminons ce Chapitre en décrivant les émulsions qui sont type particulier mais assez
courant de suspensions colloidales. Une émulsion est définie comme étant une préparation
obtenue par la division d’un liquide en gouttelettes au sein d’un autre liquide avec lequel il ne
peut pas se mélanger et incluse par exemple la mayonnaise et des crémes cosmétiques. Une

émulsion se compose donc de deux phases liquides non-miscibles.
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12.3.1. Stabilité des émulsions

La stabilité d’une émulsion est créée par la formation d'un film entre les deux phases au moyen
d'un surfactant (par exemple un lipide polaire) qui réduit la tension superficielle. Dans le cas
d’une émulsion huile—eau, les molécules de surfactant sont constituées d’une partie hydrophobe
et d’une partie hydrophile. L’énergie des interfaces détermine la morphologie de 1'émulsion. La
viscosité dépend de la géométrie et de la concentration des phases. L’interface des deux phases

de I’émulsion huile - eau est représentée schématiquement sur la Figure 12.12.

surfactant
W avec leurs
huile parties:
M hydrophobe
hydrophile

cau

ERERAES

Figure 12.12. Représentation schématique des interfaces d’une émulsion eau-huile.

Les deux phases non-miscibles sont séparées par un film de cristal liquide lamellaire consistant
en une couche simple ou double de surfactant. La taille des particules est donnée par la tension
interfaciale entre les deux phases, les propriétés rhéologiques des interfaces et 1’histoire des

écoulements subis par I’émulsion. Des exemples d’émulsions sont :

- la mayonnaise (eau - huile),
- le lait (eau - graisse),

- les crémes cosmétiques

- les mélanges de polymeres,

- les mousses (la phase dispersée est sous forme gazeuse),

123.2 Inversion de phase

Bien que le type de composants soit le méme, la viscosité d'une émulsion est complétement
modifiée par le changement de la concentration des composants. En effet, en ajoutant
suffisamment du composant de la phase dispersée, celle-ci peut devenir la phase continue. Ce

phénomene est appelé inversion de phase.
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L’inversion de phase est également controlée par le type et la concentration de surfactant ainsi

que par la température. Cette inversion peut étre illustrée par un diagramme de phase comme

le montre la Figure 12.12.

, Ligme de
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d'inversion spinodale
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co-continue P
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Figure 12.12. Diagramme de phase d’une émulsion eau—huile.

1233 Exemple : la margarine

La margarine est une émulsion d'eau dans I'huile. La phase dispersée est constituée d’eau, de

sel et d’agents conservateurs. Dans quelques cas, des protéines du lait sont utilisées. La phase

continue est composée d’huile végétale hydrogénée ou occasionnellement de graisse animale.

La Iécithine et le monoglycéride sont généralement ajoutés dans la phase huileuse. La

margarine contient entre 40% et 80% d’huile.

La margarine est formulée de maniere a posséder des bonnes propriétés sensorielles, comme sa

N A

fusion dans la bouche ou sa capacité a étre épandue. Elle doit aussi rester semblable au beurre.

En limitant la fraction de graisse dans la margarine, il est difficile de formuler un produit

semblable au beurre. En effet, I’émulsion eau-huile devient plus difficilement stable et il existe

un risque d’inversion de phase.
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Les essais rhéologiques permettent de quantifier la texture de la margarine et sa capacité a étre
tartinée afin de la comparer au beurre. Le probleme principal lors des mesures rhéologiques est
le glissement aux parois du rhéometre, ce qui fausse les valeurs réelles de la viscosité. En

général, la margarine suit un modele rhéologique appelé modele de Bird-Leider :

(12.9)

r=—m(~7) {1 +(byt —1)exp {_ﬁﬂ

ou m et n sont les parametres de la loi de puissance, t le temps, A une constante de temps et a et

b des constantes ajustables.
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13 RHEOLOGIE DES SUSPENSIONS

La présence de particules solides dans le fluide a fondamentalement pour conséquence
d’augmenter la viscosité apparente. Les diverses forces d’interactions interparticulaires
induisent un accroissement de la dissipation d’énergie au sein de la suspension en écoulement.
L’accroissement de la viscosité de la suspension est alors associé a 1’énergie qu’il faut dépenser
pour déplacer les particules les unes par rapport aux autres. Dans ce qui suit, nous allons
examiner 1’influence de la fraction volumique des particules ainsi que celle de leur

configuration et de leur distribution granulométrique sur la viscosité apparente de la suspension.
131 SUSPENSIONS DE PARTICULES SPHERIQUES
13.1.1 Suspensions diluées

Dans le cas d’une suspension diluée, les particules sont suffisamment éloignées les unes des
autres pour qu'on puisse les considérer comme étant indépendantes et négliger ainsi les
interactions hydrodynamiques entre les particules. Dans ces conditions, on peut facilement
estimer le champ des vitesses du fluide autour de chaque particule. En supposant un non
glissement du fluide a la surface des spheres, 1’expression de la viscosité 7 est donnée par la

formule d’Einstein :

n=n,(1+k9) (13.1)

ou 7 est la viscosité du fluide, ¢ la fraction volumique de particules et k. un coefficient, égal a
2.5 dans le cas de spheres. Les valeurs de k. pour d’autres géométries sont répertoriées dans le
Tableau 13.1. Larelation d’Einstein est basée sur les équations cinématiques d'un flux laminaire
dans un réseau tres dilué de particules sphériques. La viscosité relative en fonction de la fraction
volumique des particules et le comportement réel sont reportés a la Figure 13.1a. La Figure

13.1b montre 1’évolution du coefficient d’Einstein (k) en fonction de la concentration.

L’équation 13.1 donne de bonnes prédictions pour les expériences menées avec des suspensions
diluées, de concentration inférieure a 2%. En revanche les courbes expérimentales s’écartent

de la théorie des que la concentration augmente.
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Tableau 13.1. Valeur du coefficient d’Einstein k. en fonction de deux géométries de particules et de la direction

du flux par rapport aux particules.

Type de particules

Valeur de k. Schéma du fluide et particules

- sphéri 2.5
sphériques O 8
—
— OY0
- cubiques 3.1
—_—
—_—
e
-réseau de fibres 2L/d L
(flux parallele) <
o ) d
— Uy
00—
— )
- réseau de fibres 1.5 ,
(flux transversal) ,
—
k
g '
comportement
2.5 :
[
[
1 | |
[ ' -
1 I _
10% 10% ¢
(a) (b)

Figure 13.1. Evolution de la viscosité relative 77/7. (a) et du coefficient d’Einstein (b) en fonction de la fraction

volumique de particules.

13.1.2. Suspensions semi-concentrées

La Figure 13.1a montre que le comportement réel dévie rapidement de 1'équation donnée. Il est

possible d’augmenter la plage de validité en ajoutant des termes d’ordre supérieur. La relation

d’Einstein prend alors la forme d’un développement viriel :

Na=1+25¢+kud” + ...

(13.2)

ou ky est appelé coefficient de Huggins. L'ordre de 1'équation se réduit si on réarrange les termes

sous la forme d’une viscosité réduite 7red :

red

- m?T;l =25+ kug+ ...

(13.3)
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La Figure 13.1b illustre ce concept, et la pente de la courbe correspond au terme kz. De plus,

on a la relation suivante :
Tred(¢p —> 0) = ke = [77] (13.4)

Par la suite, on utilisera seulement la viscosité intrinseque [ 7] pour représenter cette variable.
Un calcul tenant compte des interactions de paires dans différents types d’écoulements a été
effectué par Batchelor et Green en 1972. Ils ont trouvé pour des suspensions macroscopiques a
fort nombre de Peclet une valeur de ky égale a 7.6 pour un écoulement élongationnel, et 5.2
pour un cisaillement simple. L’équation (13.2) donne de bonnes prédictions pour des
suspensions concentrées jusqu’a 10%. Au-dela de cette concentration, la viscosité dépend

fortement de la fraction volumique des particules.

L'équation de Mooney décrit également le comportement de suspensions semi-concentrées en

faisant intervenir une fraction maximale de compactage @nax, définie a la section suivante :

ln{l} = ko
Mo 1_¢/¢ma_x (13.5)

La Figure 13.2 illustre la dépendance de la viscosité d’une suspension de particules sphériques
monodisperses en fonction de la fraction volumique des particules. Cette dépendance est
fortement non linéaire, au-dela de ¢ = 0.4 une 1égere variation de la fraction volumique induit

une augmentation significative de la viscosité.
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Figure 13.2. Viscosité relative d’une suspension en fonction de la fraction volumique de particules.
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13.1.3. Suspensions concentrées

D’apres les paragraphes précédents, on constate qu’au fur et a mesure que la fraction volumique
des particules augmente, la loi proposée donne de moins en moins satisfaction. L’interaction
entre les particules cause une élévation rapide de la viscosité. Si les particules sphériques
monodisperses de la solution sont concentrées dans le solvant newtonien, il faut affiner les

relations précédentes.

Une autre approche souvent utilisée par les rhéologues est I’approche de type milieu effectif.
Les suspensions sont traitées comme des milieux continus : les particules et le fluide sont
considérés comme un milieu homogene continu de viscosité 7 qui ne dépend que de la
concentration en particules et de la viscosité du fluide. De 13, si on ajoute une faible fraction de
particules d¢ << 1, on peut supposer que 1’on aura une variation linéaire de la viscosité en

fonction de la concentration :
n(¢+de)=n(e)(1+[n]de) (13.6)

avec [ 7] la viscosité intrinseque locale de la suspension définie par :

_ . n(¢)-n(e)
[n]—gg;T (13.7)

Il faut cependant noter que le volume accessible aux particules ajoutées n’est pas le volume
total du liquide mais une fraction de ce volume qu’on note 1 — g ol a est un facteur qui tient

compte de 1’encombrement stérique. On peut alors écrire :

nlo+a0)=n(o) 1+ i

En intégrant I’équation précédente on obtient I’expression de Krieger et Dougherty :

n=n,(1-og) """ (13.9)



Rhéologie 135

ol o 'est appelé la concentration critique pour laquelle la viscosité diverge. En effectuant un
développement limité de premier ordre en ¢, on retrouve 1’équation d’Einstein pour [77] = 2.5.
Par ailleurs si on assimile la concentration critique de divergence a la concentration maximale

de compactage @max, I’équation précédente devient :

2.5 01
_ ¢
um _(l_ﬁ) (13.10)

La concentration maximale @nax dépend de la nature de I’écoulement et de la distribution
spatiale et granulométrique des particules. Dans le cas d’une suspension de spheres
monodisperses, @max prend différentes valeurs suivant 1’arrangement des spheres. Ainsi on
distingue deux sortes d’arrangements : aléatoire ou régulier. Le premier peut étre lache
(Pmax = 0.56) ou dense (Pmax = 0.64). Quant a I’arrangement régulier, il se fait suivant différents
réseaux auxquels correspondent différentes fractions de compactage comme montré a la Figure
13.3. On trouve 0.524 pour un réseau cubique simple (a), 0.605 pour un empilement carré
mono-décalé (b) ou triangulaire simple (d), 0.698 pour un empilement carré bi-décalé (c) ou
triangulaire mono-décalé (e) et 0.74 pour un empilement triangulaire bi-décalé (f). Cette
formule est aussi applicable pour le cas de suspensions bidisperses ou polydisperses en adaptant

la valeur de I’exposant et de la compacité maximale au systeéme étudié.

BEEOY &

(2)

Figure 13.3. Types d’empilements compacts réguliers.

Certaines valeurs de la fraction volumique a capacité maximale sont présentées dans le Tableau

13.2 en fonction des dimensions et des formes des particules sphériques ou fibreuses.
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Tableau 13.2. Valeur de la fraction volumique a capacité maximale pour différentes géométries de particules.

Type de particules Arrangement des particules Valeurs de @max

dans la suspension

Spheres Compactes 0.64
Non compactes 0.60

Fibres 1 dimension 0.82
3 dimensions, 1/d =2 0.67
3 dimensions, 1/d =4 0.63
3 dimensions, 1/d =8 0.48
3 dimensions, 1/d =16 0.3
3 dimensions, 1/d =50 0.1

Notons par ailleurs que la distribution des particules au sein d’une suspension soumise a un

écoulement ne reste pas homogene au cours du temps. En effet, les inclusions solides ont

tendance a s’orienter dans des directions privilégiées si elles ne sont pas sphériques ou a migrer

a travers le fluide au cours de I’écoulement et a s’organiser les unes par rapport aux autres. Il

en résulte une variation de la viscosité en fonction du temps ou du taux de cisaillement. Ainsi,

la suspension peut présenter un caractere thixotrope, rhéofluidifiant ou rhéoépaississant. Une

répartition ordonnée des particules au sein du fluide conduit en général a une suspension moins

visqueuse qu’une répartition désordonnée.

13.2 AGREGATION ET SOLVATATION DES PARTICULES

13.2.1 Suspensions concentrées avec formation d’agrégats

Dans le cas ol des agrégats se forment on adapte 1’équation 13.9 comme suit :

(13.11)

(13.12)
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ou Vs est la somme des volumes des spheres qui forment 1’agrégat et V1 le volume du solvant
emprisonné a I’intérieur de I’agrégat. La somme Vs + Vi correspond au volume total de

I’agrégat.

13.2.2 Adsorption de solvant a la surface des particules (solvatation)

L’adsorption de solvant a la surface des particules accroit la taille et la concentration effective
des particules, comme le montre la Figure 13.4. A noter que 1’épaisseur de 1’interface peut étre
comparable a la taille des particules, en particulier quand celle ci est nanométrique. La figure
montre également une particule de forme arbitraire sous forme solvatée. Le solvant piégé a la

surface de la particule diminue le volume du liquide libre.

couche V dR
adsorbée A A solvant piégé
particule Y 2R particule

Figure 13 4. Représentation schématique d’une particule sphérique solvatée et physique d’une particule de forme
quelconque solvatée.

L’immobilisation du solvant a la surface de la particule conduit a au changement de volume

suivant :

V.=V (1+3dTR) (13.13)

eff part

ou Verest le volume effectif (solvaté) de la particule et Vpa: son volume non-solvaté. De 13, la

fraction volumique est modifiée comme suit :

Dee (13.14)

ol ¢y est la fraction volumique des particules solvatées et ¢ la fraction volumique des
particules séches. La viscosité, pour le cas de particules sphériques monodisperses diluées dans

un solvant newtonien, est :

3dR
N, = 1+2'5(1+T>¢m (13.15)
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133 SUSPENSIONS DE PARTICULES NON-SPHERIQUES
1331 Influence du rapport de forme

L'effet d'une particule allongée sur la rhéologie d’une suspension dépend de son orientation par
rapport a I'écoulement. Une géométrie simplifiée est I'ellipsoide comme représenté a la Figure
13.5, présentant un rapport des dimensions (ou rapport de forme, aspect ratio) a, €gal a a/b. Un
rapport de forme inférieur a 1 correspond a des particules sous forme de disques alors qu’un

rapport de forme supérieur a 1 correspond a des fibres.

a

-
-

A T
R

Figure 13.5. Schéma d’une particule ellipsoidale de grand axe a et de petit axe b.

Pour décrire la viscosité d’une suspension de particules non-sphériques présentant une

orientation aléatoire on utilise 1’équation de Simba :

B 15(1n(2ra,)—i)+5(ln(2ar)—l+1)+E (13.16)

ou A est un coefficient qui change selon la forme :

N
I S}
|
p—

Q
S

+

—_

(13.17)

Pour un ellipsoide, A vaut 1.5 et pour un prisme cylindrique (fibre), A vaut 1.8. La Figure 13.6
montre la forte influence du rapport de forme sur la viscosité intrinseque [ 77], dans le cas ou il

est soit inférieur a 1 (correspondant a des particules sous forme de disques) soit supérieur a 1

(cas des fibres).
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Figure 13.6. Viscosité intrinséque isotrope de suspensions diluées d’ellipsoides de révolution en fonction de leur
rapport de forme Ar (Ar< 1 correspond a des disques, Ar> 1 correspond a des fibres).

La Figure 13.7 montre un exemple de mesures de viscosité de suspensions de PMMA pour

différentes tailles des particules. La figure montre la viscosité relative et la viscosité réduite
correspondante (équation 13.3). Lorsque la taille moyenne d= 38um et ¢=0.175, on mesure

une viscosité intrinseque de 5.8 (ordonnée a I’origine de la figure 13.5b).

E g
“nrel a gf;‘ Anred i § %
XL o n 2
“@ A = N
|
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|
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|
o 17.5% i
(a) (b)

Figure 13.7. Evolution de la viscosité relative (a) et réduite (b) de suspensions de PMMA en fonction de la taille
et de la fraction volumique de particules.

Si la suspension est constituée de particules sphériques solvatées, on a :

[7] =58=25[14+3(AR/R)] = AR/R=044 (13.18)

Si les particules sont elliptiques non-solvatées, le rapport des dimensions est a, =5.0.



13.10 Rhéologie des suspensions

D’autres facteurs entrent en compte, notamment le facteur de forme et la polydispersité. Ils
peuvent étre déterminés tous deux sous le microscope. La polydispersité peut également étre

déterminée par sédimentation.

13.3.2 Suspension de fibres

La forme des particules, tout comme leur orientation, est importante pour déterminer leurs
interactions. En particulier, la forme des particules détermine leur degré d'interaction, et donc,
la transition d'un régime dilué a un régime concentré. Une suspension de spheres a 3% est
"diluée". Mais des fibres longues (rapport de forme L/d élevé) forment déja un réseau

N

"concentré" a cette fraction volumique. Les Figures 13.8 (a) et (b) illustrent ce principe.

(a) b)

Figure 13.8. Deux suspensions de méme fraction volumique : pour (a), il s’agit d’une suspension diluée, tandis
que pour (b), elle est concentrée.

Il y a d’autres facteurs de forme, par exemple :
- le rapport de forme,
- la surface, le rapport (surface/volume),
- D’alignement.

Régimes de concentration

Pour des fibres de longueur L et de diametre d on définit plusieurs régimes de concentration en

fonction de la fraction volumique des fibres ¢ comme illustré a la Figure 13.9.
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Figure 13.9. Représentation graphique des différents régimes d’interaction en fonction du rapport L/d et de la
concentration de fibres.

Chaque plage est définie mathématiquement comme suit, selon le nombre N de fibres par unité

de volume représentatif :

- Dilué:N<1 ou ¢< (%)_2 ,
- Semi-concentré : 1 <N<60 ou (%)_2 <¢p< (%)_l,

- Concentré : N>60 ou ¢ > (l/d)_l.

Pour des particules sphériques, on utilise la condition sur N, et pour les fibres, la condition sur
L/d. Le régime semi-concentré équivaut au régime semi-dilué (terme parfois utilisé). Le volume
représentatif est un volume dont la dimension caractéristique est supérieure ou égale a la

longueur d’une fibre individuelle.

Orientation des fibres

La regle de la dynamique d’orientation de fibres en régime dilué a été établie par Jeffery (1922).
Il a fait le bilan des forces et des moments exercés par le fluide sur une particule. Il y a deux

regles d’orientations décrites a la Figure 13.10 :

1)  Un écoulement en cisaillement aligne les fibres dans la direction du flux,

2)  Un écoulement en traction aligne les fibres dans la direction de la traction.
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(a) (b)

Figure 13.10. Illustration des deux regles d’orientation : (a) en cisaillement, (b) en extension.

Le centre de gravité de la particule se déplace avec le fluide. Il y a un effet couplé, car si le flux
influence I’orientation des fibres, 1’orientation des fibres influence aussi le flux. Il faut retenir

que ’orientation des fibres modifie la viscosité de la maniere suivante :

n,, =M. (13.19)

Dans ce paragraphe, seul le cas dilué a été traité. L’étude du de suspensions semi-concentrées
de fibres est beaucoup plus complexe, car il peut y avoir des collisions entre particules. Le
régime concentré est en revanche un peu plus simple a décrire, car la répartition est
statistiquement homogene. Nous avons par ailleurs considéré que les fibres étaient rigides. En

......

suspensions est particuliecrement difficile.

134 EFFETS DYNAMIQUES ET SEUIL D’ECOULEMENT

L’effet de 1’ajout de particules sur la viscosité d’un fluide est montré sur la Figure 13.11.L’ajout

de particules dans un fluide provoque :

- une augmentation de la viscosité (la courbe de la Figure 13.11 est translatée vers le haut),

- une augmentation du temps de relaxation (A) (la courbe de la Figure 13.11 est translatée
vers la gauche).

- lorsque la concentration en particules est élevée, une droite de pente -1 se superpose au
plateau newtonien aux basses vitesses de cisaillement. Cette droite correspond au

comportement du réseau de particules et elle est caractéristique d’un seuil d’écoulement.

134.1 Seuil d’écoulement

Le seuil d’écoulement correspond a une certaine contrainte minimale (7)) qui doit étre exercée

pour que 1’écoulement ait lieu. Cela veut dire que si on applique une contrainte au-dessous de
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Y

Figure 13.11. Evolution de la courbe de viscosité en fonction de la fraction de particules pour une suspension
inerte.

la contrainte critique d’écoulement (7,), le matériau ne s’écoule pas, tandis que si on applique
une contrainte supérieure au seuil d’écoulement, le matériau va s’écouler comme un fluide. Le
seuil d’écoulement est ainsi une propriété du matériau dénotant la transition entre les
comportements solide et liquide. Ce seuil illustre le minimum de contrainte de cisaillement
correspondant au premier signe d’écoulement. L’origine du seuil d’écoulement provient des

interactions entre les particules et de la formation de réseaux (voir paragraphe précédent).

Il est a noter qu’il faut toujours définir un temps d’observation durant lequel on décide si le
matériau s’écoule ou non. Il n’est pas exclu qu’un écoulement soit observé pour des temps
beaucoup plus longs (phénomene de fluage). Il est donc judicieux de parler de seuil

d’écoulement apparent.

Le seuil d’écoulement peut étre pris en compte dans la modélisation du comportement des
suspensions comme schématisé a la Figure 13.12. Le modele le plus simple est celui de
Bingham (1922) qui fait correspondre a la suspension un solide rigide pour des contraintes
inférieures au seuil d’écoulement et un liquide newtonien pour des contraintes supérieures au

seuil.

y=0 si 7=<71 (13.20a)

n="4ny s r>a (13.20b)

ou 7y est la viscosité Newtonienne.
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Un modele plus complexe considere, pour des contraintes supérieures au seuil d’écoulement,
un comportement liquide régi par une loi de puissance. Il s’agit du modele de Herschel-Bulkley

(1926) :

n = T7°+ Kyl si > (13.21)

Herschel-Bulkley

Bingham

\

Logn

Loi puissance

Newtonien

Log }/

Figure 13.12. Comparaison du modele Newtonien avec des modeles non-Newtoniens.

Finalement, dans le cas le plus général, on utilise une équation basée sur le modele de Carreau-

Yashuda (voir Chapitre 7) :

n-1

n="en[1+(20) ] si w>n (1322)
Y

Il faut remarquer que le comportement solide peut aussi étre représenté par un module élastique

=Gy si <.

134.2 Modes et exemples de comportement non-newtonien

Une grande diversité de comportements rhéologiques sont observés dans les suspensions. Ces
comportements sont classifi€s selon des modes, en fonction de la vitesse de cisaillement et du
temps comme exposé dans des Chapitres précédents et résumé dans le Tableau 13.3. Plusieurs

exemples illustrent ces différents comportements comme suit.
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Tableau 13.3. Différents modes de comportement.

Variables augmentées 77 augmente 77 baisse
Vitesse de cisaillement Rhéoépaississant ou Dilatant Rhéofluidifiant ou Pseudoplastique
(sable mouillé, suspension céramique) (boues, peinture)
Temps Rhéopeptique Thixotrope
(latex, sable) (sables mouvants, ketchup)
Argiles

Les argiles sont des minéraux constitués par I’empilement de feuillets orthosilicates liés par des
liaisons ioniques. Ces matériaux sont hydrophiles et les feuillets peuvent se disperser dans 1’eau,
donnant lieu a des suspensions instables, thixotropes, dont le comportement réversible est

illustré a la Figure 13.13.

2
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Figure 13.13. Comportement de suspensions aqueuses d’argiles.

Beurre

Le beurre est une émulsion stable d’eau dans des lipides, l€gerement thixotrope, formant des

bandes de cisaillement. Son comportement réversible est illustré a la Figure 13.14

S Sy .

S
particule ou agrégat

S & T

Figure 13.14. Comportement du beurre.
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Gels

Les gels sont des suspensions instables, thixotropes, formant des réseaux. Leur comportement

réversible est décrit a la figure 13.15.
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Figure 13.15. Comportement des gels.

Mousses

Les mousses sont des émulsions dans lesquelles il y a coalescence des particules. Leur

comportement irréversible est illustré a la Figure 13.16.

%020 Xoke) (g)
O o)
ocooéc?%o s &g& = o057

ORA%0 2> ORDe

Figure 13.16. Comportement d’une mousse.
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ETUDE DE CAS

LA PEINTURE!

Une peinture est un matériau fluide, liquide ou pulvérulent qui, appliqué sur un support, donne

par un processus physique ou chimique, un film mince adhérent, protecteur et/ou décoratif. Il

existe quatre grandes familles de constituants :

Liants qui apportent les principales propriétés au revétement et formeront un film
protecteur. C’est le plus important, déterminant la classe de la peinture ;

Solvants qui mettent le liant en solution et donnent la fluidité a la peinture pour sa
fabrication et son application. Leur élimination permet la formation du film ;

Matieres pulvérulentes : ce sont d’abord les pigments, pour la couleur, I’opacité, la
résistance a la corrosion et aussi les matieres de charge pour renforcer le revétement ou
controler le brillant, par exemple ;

Additifs qui ont une action sur la fabrication, le stockage, la formation et la protection

du film. La création de film protecteur est directement liée a la phase de séchage...

Le séchage se fait par un mécanisme physique suivi ou non d’une réaction chimique :

Le séchage physique est obtenu par €vaporation a 1’air. C’est soit 1’élimination du
solvant soit la fusion des particules de liant qui assure la cohésion du film et son
adhérence au support, selon la peinture.

Le séchage chimique est obtenu sous 1’action de I’oxygene de 1’air ou par élévation de
la température, par 1’adjonction d’un second liant ou déclenché par des catalyseurs,

entre autres.

Pour I’étude d’un produit, il faut premierement savoir ce qu’on désire obtenir de celui-ci. Quel

est son cycle de vie, son cahier des charges, ses caractéristiques ... Pour le cas de la peinture,

on peut généraliser aux points suivants :

! Référence d’une partie du texte : http://www.maison-et-sante.com/la-peinture/
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1) Cycle de vie: définition des conditions auxquelles sera soumis le produit :

la formation / la production,

le transport / le stockage,

le mélange,

I’application / le séchage.
2)  Cahier des charges, criteres de performance et propriétés désirées :
- une bonne dispersion des pigments,
- pas de coagulation = un mélange aisé,
- une sédimentation lente,
- une viscosité basse a l'application = la présence de surfaces lisses,
- une viscosité élevée apres l'application = pas de coulée.
3) 1l faut traduire ses renseignements en termes rhéologiques. On veut donc :
- une suspension stable,
- une concentration de pigments selon 1'opacité désirée,
- une viscosité adaptée au mélange,
- une pseudoplasticité prononcée,
- une suspension élastique,
- un mélange thixotropique,

- un temps de relaxation suffisamment court pour un lissage de la surface.

14.2 LE CHOCOLAT

Le chocolat est constitué d’une phase continue, le beurre de cacao, et d’une phase dispersée

solide composée de cacao, de sucre et de poudre de lait comme montré a la Figure 14.1.

Sugar crystal

(50 %) Fat matrix
Milk solid Cocoa solid
(15 %)
Sugar agglomerate
Semi-solid

fat matrix (15 %)

Cocoa solid
(5 %)

Figure 14.1. Microstructure du chocolat (a) et micrographie optique du chocolat au lait (b ; Chen & Mackley, Soft
Matter 2005).
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A une température supérieure a 35°C, le beurre de cacao est a 1’état fondu et le chocolat peut
étre considéré comme une suspension concentrée. La quantité des composants solides varie
entre 65 et 73% en poids. Les différents ingrédients solides différent en concentration, en taille
des particules, en forme et en propriétés de surface. De ce fait, on ne peut pas considérer la
phase dispersée solide comme une phase uniforme. L’ intervalle désiré de la distribution de taille
des particules se situe entre 15 et 25 ym. A cause du broyage lors de la mise en ceuvre du

chocolat, des particules fines avec des tailles inférieures a 0.1 xm sont aussi présentes.

Les propriétés rhéologiques du chocolat sont contrdlées par 1’ajustement de différents
parametres comme la concentration des composants solides, la taille des particules, le procédé
de fabrication, la quantité finale d’eau (0.5% a 1.2%) et I’ajout d’ingrédients de surface active
(1écithine). Ainsi la viscosité augmente avec le diametre des particules de cacao et diminue avec
celui du sucre (car I’un est hydrophobe et 1’autre hydrophile). La Iécithine réduit les valeurs de
la viscosité, car elle forme un revétement lubrifiant sur les particules (spécialement celles de

sucre) et remplit les aspérités de surface.

A T’état fondu, la phase continue (beurre de cacao) montre un comportement newtonien a des
températures au-dessus de 37°C. Sur toute la plage de température de 28°C a 100°C, la viscosité
du beurre de cacao dans I’état non-cristallin obéit a la relation exponentielle de Frenkel —

Eyring :

n=5.7-10" exp{3533'7}

(14.1)
ou T est la température absolue.

L’incorporation de la phase dispersée dans le beurre de cacao entraine des changements dans
la viscosité et 1’apparition d’un seuil d’écoulement (7). Ce seuil d’écoulement peut étre
déterminé par des mesures directes ou par 1’extrapolation des mesures rhéologiques par

I’équation de Casson. En effet, en général, le chocolat suit la relation de Casson :

V=t + ey (14.2)
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ol 7ca est la viscosité de Casson. Cependant, I’équation de Casson surestime le seuil
d’écoulement comme le montre la Figure 14.2. Malgré tout, cette expression modélise bien le

comportement du chocolat a des taux de cisaillement supérieurs a 1 s,
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Figure 14.2. Représentation du comportement du chocolat et de 1’équation de Casson.

Le seuil d’écoulement apparent ne peut pas étre défini avec précision, car la microstructure du

chocolat se désagrege en deux étapes décrites a la Figure 14.3 :

- rupture des contacts entre particules et formation d’agrégats,

- rupture des agrégats.
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Figure 14.3. Illustration des deux étapes de désagrégation de la microstructure du chocolat.

La microstructure et la rhéologie sont bien évidemment liées. Le cisaillement casse les agrégats
et diminue la viscosité. Les tests ne se font pas a microstructure constante et les phénomenes

observés ne sont pas réversibles. La rhéologie peut donc servir a estimer la microstructure.

143 LE FROMAGE

Le lait est une émulsion lipides - eau. Pour produire du fromage a partir de cette matiere

premiere, il faut que des réactions chimiques aient lieu. Au fur et 2 mesure de la transformation,

les propriétés mécaniques se modifient. La viscosité, puis la rigidité évoluent avec la
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microstructure du fromage schématisée a la Figure 14.4. Les étapes de la fabrication du fromage

sont les suivantes :

- Ajout de bactéries au lait. Cela initie le développement de I'acidité (et définit plus tard le
golt). L'acidité favorise légerement la floculation de la caséine du lait et 'agrégation des
globules de matiere grasse.

- Ajout d’enzymes. Celles-ci attaquent la caséine et causent leur coagulation pour former
un caillot. La formation d'une structure continue donne au fromage sa rigidité, apres

I'expulsion de 1'eau (petit-lait).

La caséine est une structure "spongieuse", déformable, et son volume effectif pour les calculs
de viscosité est supérieur de deux a quatre fois au volume réel occupé par les micelles elles-

mémes, car il y a emprisonnement du solvant (solvatation).

cm mm nm nm
- I -+

| Bulles Grains de caille MG/Prot Pores Bactéries Para-caséines |

2

N, 08
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Figure 14.4. Schématisation de la structure des fromages a différentes échelles (Huc these 2013).

La structure du fromage suggere que le modele de Kelvin ou le modele standard linéaire puisse
étre utilis€. Une caractérisation de la viscosité devrait permettre un suivi de 1'évolution
structurale et mener a une automatisation du procédé de fabrication et a des controles de qualité.
La Figure 14.5 décrit la viscosité en fonction du temps. L’accroissement de la viscosité est

soudain et trés prononcé.



14.6 Etude de cas

ajout
d’enzymes

v/

|

Figure 14.5. Evolution de la viscosité du fromage lors de sa fabrication.

Les propriétés changent dans le temps parce qu'il y a formation de grumeaux, ainsi :

- le choix de la taille de 1'échantillon doit étre judicieux,
- les temps de mesure doivent &tre courts,
l'essai ne doit pas rompre la microstructure, ni interrompre les réactions chimiques et

ainsi fausser la mesure de la viscosité.

Une viscosité trop faible est mesurée si l'essai est réalisé a une vitesse ou a une amplitude de
cisaillement trop élevée, par suite d'une rupture de la structure du fromage. Une méthode de
mesure de la viscosité est celle de la propagation d’ondes. En effet, I’atténuation est une
fonction du taux de solidification. Le fromage solide a un comportement viscoélastique a des

cisaillements y petits, puis un comportement plastique comme 1’esquisse la Figure 14.6.

AT v = constant

rupture

Y

Figure 14.6. Représentation de la contrainte en fonction du temps.

144 L'HEMORHEOLOGIE

L’hémorhéologie est la rhéologie du sang. Elle est trés complexe et dépend de beaucoup de
facteurs. Le sang est une suspension dont le plasma est le solvant (newtonien) et les cellules
(globules rouges, globules blancs et plaquettes sanguines) compose la phase dispersée solide.

La composition du sang est montrée a la Figure 14.7.
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Figure 14.7. Composition du sang [http://www.dondusang-doubs.org].

Le plasma est le liquide qui tient en suspension les globules et permet leurs déplacements. Il
représente environ 60% de la masse totale du sang, les 40% restants représentent la masse des
globules rouges, des globules blancs et les plaquettes sanguines. I1 est essentiellement constitué
d’eau, dans laquelle se trouvent en solution des sels minéraux, du sucre, des protéines et

diverses substances (hormones, vitamines, etc.) en tres petite quantité.

Les globules rouges sont aussi appelés hématies ou érythrocytes. Ces cellules ne posseédent pas
de noyau et ont la forme d’un disque, renflé sur les bords, aminci au centre. Leur diametre est
d’environ 8 um et leur épaisseur 2 ym. Leur nombre normal varient entre 4.5 et 5 millions par
mm’ de sang. La surface totale des globules rouges d’un étre humain représente environ 200 mr.

L’hématocrite (H) caractérise la quantité de globules rouges dans le sang.

La viscosité dépend de la viscosité du plasma, de la concentration de protéines dans le plasma,
de la fraction volumique des globules rouges, des globules blancs et des plaques, de la
concentration de diverses substances (hormones, protéines, etc...), de I’agrégation des globules

rouges, de leur déformabilité, du diametre du canal, etc...

Le comportement du sang est décrit par le modele de Carreau. Sa rhéologie est déterminée par
la complexité de la composition et les nombreuses interactions entre les particules qui créent
un seuil d’écoulement. La viscosité en fonction de la vitesse de cisaillement a divers taux

d’hématocrite, est représentée a la Figure 14.8. Le plasma pur est un liquide newtonien.
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Figure 14.8. Evolution de la viscosité en fonction de la vitesse de cisaillement a divers taux d’hématocrite.

La structure et la géométrie caractéristique des globules rouges sont modifiées par 1'écoulement.
Cette déformation nécessite tres peu d'énergie a cause de leur géométrie. Cette géométrie, qui

dépend de la vitesse de cisaillement, est représentée schématiquement a la Figure 14.9.
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Figure 14.9. Evolution de la géométrie des globules rouges avec I’augmentation de la vitesse de cisaillement.

Les globules rouges migrent vers le centre des vaisseaux pendant 1’écoulement. Il faut donc
faire attention lors des mesures, car la zone riche en plasma pres des parois fausse la mesure de

la viscosité. Ceci est décrit a la Figure 14.10.

Figure 14.10. Représentation de I’écoulement du sang au travers d’un vaisseau.

La compréhension physiologique et chimique de I'hémorhéologie conduit a de nombreuses

applications. La rhéologie du sang est un indicateur physiologique. Une hémorhéologie
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anormale, en particulier une viscosité élevée, indique une pathologie : diabete, hypertension,

anémie (défaut de cellules).

Il y a trois cas principaux de relations entre la rhéologie et certains phénomenes chimiques :

- nélevé ay faible : agrégation,
n élevé ay élevé : déformabilité réduite des globules rouges,
- caractéristiques de coagulation,

- caractéristiques de sédimentation des globules rouges.

14.5 BIORHEOLOGIE CELLULAIRE

La cellule typique est composée essentiellement de trois éléments : une masse de cytoplasme,
entourée d’une membrane cellulaire et contenant un noyau comme décrit a la Figure 14.11.
Chacun de ces trois éléments possede, en lui-méme, une structure fort complexe. La dimension
des cellules varie considérablement. L.’ordre de grandeur de la grande majorité des cellules

d’animaux pluricellulaires est de 20 a 40 ym.

Le cytoplasme est la masse de substance vivante comprise a I’intérieur de la membrane, a
I’exclusion du noyau. Il est formé d’une substance de base, le hyaloplasme, dans laquelle
baignent différents objets parmi lesquels se trouvent les mitochondries, le réticulum
endoplasmique, les lyposomes ainsi que d’autres corpuscules et granulations. Le hyaloplasme
est riche en eau et en substances dissoutes dans I’eau, parmi lesquelles se trouvent notamment

des protéines, des sels, des glucides.

L'étude des cellules est délicate, parce que l'interaction entre corpuscules affecte leur évolution

dans le milieu cellulaire.

mitochondrie
cytoplasme
lyposome

membrane
noyau

réticulum endoplasmique

Figure 14.10. Représentation schématique d’une cellule.
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Il faut noter que le cytoplasme coagule hors de la membrane cellulaire, ce qui nécessite une

étude in-vitro et complique encore plus I’étude de la cellule.

Deux approches sont possibles pour déterminer la viscosité des cellules. La premiere consiste
en ’introduction de particules de fer ou de nickel. On applique un champ magnétique et la

viscosité est calculée a partir de la vitesse de déplacement de ces particules. Les relations

utilisées sont :

nzf(M ouF;d—x) et F=67md@
di di (14.3)

ou la force F est donnée par la formule de Stokes et d est le diametre de la particule de métal.
La deuxiéme approche est une centrifugation des particules (corpuscules) vers un coté de la
cellule, le retour des corpuscules se faisant alors par mouvements Browniens. Ces mouvements

suivent la loi de diffusion :

D,=14.7-107" 1;
n (14.4)
ou D, est la distance parcourue en un temps ¢ a la température 7. La viscosité du cytoplasme est

pour sa part reliée a la viscosité du hyaloplasme par la relation :
ncytoplasme =45 nhyaloplaxme (145)

La biorhéologie a encore beaucoup d’autres applications pathologiques et physiologiques.
L’étude de la salive se révele tres intéressante. Le poids moléculaire de la salive est fonction de
I’état de santé du patient. L’étude du mucus permet d’apprécier les effets des bactéries et des

hormones.




Rhéologie 15.1

15 PHENOMENES

Ce Chapitre illustre la diversité des phénomenes observés lors de 1’écoulement de liquides

viscoélastiques, sur la base d’observations reportées dans la littérature.
151 EFFET WEISSENBERG
La Figure 15.1 décrit I’effet Weissenberg. Un baton tourne dans un récipient contenant un

liquide viscoélastique. Lorsque le baton tourne, le liquide monte le long du baton tandis qu’un

liquide newtonien se collerait contre la paroi sous I’effet des forces d’inertie.

Figure 15.1. llustration de I’effet Weissenberg. Le polymere est un polyisobutyléne a haut poids moléculaire dans
un solvant a bas poids moléculaire de méme nature (reproduit de H.A. Barnes, J.F. Hutton and K. Walters, An
Introduction to Rheology, Elsevier, 1989, avec la permission de Elsevier Science).
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Les changements de la surface libre d’un additif pour huile STP (motor oil additive) a proximité
d’un baton tournant a différentes vitesses de rotation sont représentés a la Figure 15.2. Lorsque
le baton ne tourne pas, la montée est uniquement due a la tension de surface. A une vitesse de
rotation d’environ 3 tours/min le liquide commence a monter le long du baton. La forme
initialement concave tend lentement vers une forme légerement convexe. La configuration
finale, stationnaire de la goutte montante est montrée sur la figure en (h). La goutte semble
rejoindre la surface plane du liquide en un point de discontinuité. Un examen détaillé révele un

col avec un tres faible rayon.

Figure 15.2. Tllustration des changements de la surface libre d’un additif pour huile STP (motor oil additive) pres
d’un baton tournant a différentes vitesses de rotation (a) 1 tours/min, (b) 2.0 tours/min, (¢) 2.5 tours/min, (d) 3.0
tours/min, (e) 4.6 tours/min, (f) 5.5 tours/min, (g) 7.0 tours/min, (h) 8.5 tours/min (instable). (Reproduit de J. Fluid
Mechanics, G.S. Beavers and P.D. Joseph, 69, 1975, 475, avec la permission de Elsevier Science).



Rhéologie 153

15.2 GONFLEMENT DE FILIERE (DIE SWELL)

Le phénomene de gonflement de filiere se produit lorsqu’un fluide sort d’une filiere d’extrusion

dans un milieu neutre. On consideére deux cas présentés a la Figure 15.3 ou le liquide extrudé
est un fluide newtonien (77 = 11.6 Pa-s, Re = 1073) et le second ot le fluide est non-newtonien

(n=114Pa-s, Re =0.0009, We =0.272).

TR

Figure 15.3. Illustration du gonflement a la sortie d’une filiere pour un liquide newtonien (2 gauche) et non-
newtonien (a droite ; reproduit de D.V. Boger, K. Walters, Rheological Phenomena in Focus, Elsevier, 1993, p.
21, avec la permission de Elsevier Science).

Le méme phénomene apparait avec un canal de sortie plus étroit. Soit un milieu inerte constitué
de 5% de solution aqueuse de polyacrylate : des lors le gonflement de filiere selon le flux est
représenté a la Figure 15.4, ou la partie (a) montre un écoulement normal (faible flux), la partie

(b) un flux modéré et la partie (c) un flux élevé.

(a) (b) (©

Figure 15.4. Phénomene de gonflement a la sortie d’une filiere ol (a) montre un écoulement normal (faible flux),
(b) un flux modéré et (c) un flux élevé reproduit de Rheologica Acta, H. Giesekus, 8, 1968,411, avec la permission
de Elsevier Science).
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Le nombre de Reynolds, Re, augmente avec le flux. Le conflit entre 1’inertie du fluide et son
élasticité apparait. Le phénomene de gonflement est non seulement retardé par I’inertie du
liquide, mais aussi diminué. Un tel gonflement peut s’expliquer facilement au premier abord.

La Figure 15.5 donne a elle seule la principale cause de ce gonflement.
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Figure 15.5. Explication graphique du phénomene de gonflement a la sortie d’une filiere.

On introduit un rapport de diametre (die swell) qui caractérise le gonflement de filiere. Il s’agit

du rapport du diametre du gonflement par le diametre du tube. On dénombre plusieurs relations

de causes a effets, dont :

- L/R augmente = Re augmente = Die swell diminue,
- U, diminue = De diminue = Die swell diminue,
- T augmente = Force élastique diminue = Die swell diminue.

ou L est la longueur de la filiere, R son rayon, u,.. la vitesse du fluide traversant la filiere, Re le
nombre de Reynolds et De le nombre de Deborah. Il y a une relation entre la vitesse de

cisaillement et le die swell. Cette relation est décrite a la Figure 15.6.

n | n I\
— — - Die swell ,’ 2.2
105
=
5
s
@)
102 10

Figure 15.6. Relation entre la viscosité, le die swell et la vitesse de cisaillement.
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153 VORTEX

Le vortex est la frontiere séparant le fluide qui va pénétrer dans le tube de plus faible diametre
et le fluide secondaire, bloqué par les bords. L’élément de base d'un flux passant abruptement

d’un tube large dans un tube de plus faible diametre est décrit a la Figure 15.7.

Fully Developed Seccondary Flow -
Upstream Flow; Vortex )
% Tube Entrance
| atz= 0
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Figure 15.7. Représentation schématique du vortex reproduit de D.V. Boger, K. Walters, Rheological Phenomena
in Focus, Elsevier, 1993, p. 36, avec la permission de Elsevier Science).

Il est possible de déduire mathématiquement 1’écoulement d’un fluide, ce qui ne sera toutefois
pas traité dans ce cours. On se contentera d’observer ce qui se passe : les photos de la Figure
15.8 décrivent une solution aqueuse de 0.04% polyamide et sirop de glucose qui s’écoule dans

un tube avec diverses conditions.

y=11s1 y =3451 y=93s1 y=24251
Re =5.7 104 Re =1.76 10-3 Re =4.8103 Re =1.25102
We =0.079 We =0.12 We =0.179 We = 0.204

Figure 15.8. Illustration du Vortex d’une solution aqueuse de 0.04% polyamide et sirop de glucose qui s’écoule
dans un tube avec diverses conditions (reproduit de J. Non-Newtonian Fluid Mechanics, D.V. Boger, D.U. Hur
and RJ. Binnington, 20, 1986, 31, avec la permission de Elsevier Science).
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La géométrie du flux est dictée par le matériau qui s’écoule, la géométrie du tube et celle des
bords de I’entrée. Soit une solution aqueuse de 0.03% Separan MGS5 et sirop de glucose,

appelée liquide de Boger, qui s’écoule dans un tube. Les conditions physiques sont :

- y=835s!
- Re=291073
- We=0.0169

Les photos de la Figure 15.9 décrivent deux écoulements différents, car les bords d’entrée sont
différents. Sur la figure (a), on a des bords vifs et sur la figure (b) des bords arrondis avec un
rayon de 2 mm pour un diametre de 5.5 mm du tube d’arrivée. La contraction est de 4:1. Les
lignes d’écoulement illustrent la sensibilit¢ du champ d’écoulement a la géométrie du bord

d’entrée. En regardant ces photos, on vérifie la pertinence de la correction de Bagley.

Figure 15.9. Illustration du Vortex d’une solution aqueuse 0.03% Separan MGS55 et sirop de glucose dans les
mémes conditions. Les bords d’entrée du tube sont vifs en (a) et arrondis en (b) (reproduit de D.V. Boger, K.
Walters, Rheological Phenomena in Focus, Elsevier, 1993, p. 45, avec la permission de Elsevier Science).
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154 JET LIQUIDE EN FORME D’ARBRE

L’écoulement d'une solution de 3% de polyacrylamide a partir d’un trou circulaire de 1 mm de
diametre dans un récipient qui contient le méme liquide thixotropique élastique a un
comportement différent selon le débit. A des débits modérés on observe un comportement quasi
newtonien. A des débits plus importants un flux en forme d’arbre est observé. Un jet concentré,
qui ne s’agrandit pas sensiblement avec la distance, est émis par le trou circulaire jusqu’a ce
que le jet éclate de telle maniere que les lignes d’écoulement semblent se séparer comme les

branches d’un arbre. Ce phénomene est représenté a la figure 15.11.

Figure 15.10. Illustration d’un jet de liquide en forme d’arbre d’une solution de 3% de polyacrylamide & partir
d’un trou circulaire de 1 mm de diametre dans un récipient qui contient le méme liquide thixotropique élastique.
Pour que le phénomene apparaisse, il faut un haut débit (reproduit de Rheologica Acta, H. Giesekus, 8, 1969,411,
avec la permission de Elsevier Science).
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155 FLUX RADIAL DANS UNE CELLULE HELE-SHAW

Ce phénomene est observé dans le cas de I’injection d’un liquide dans un autre entre deux
plaques paralléles séparées par une tres faible distance dont I’'une est percée d’un trou en son
centre. On injecte un premier liquide par ce trou puis un deuxiéme qui repousse le premier. La
Figure 15.11 reproduit le type d’effet observé, le premier liquide étant transparent et le second
opaque. A la figure (a) un fluide newtonien déplace une solution thixotropique et €lastique de
polyacrylamide (rapport de viscosité 10%). La figure (b) montre un fluide newtonien déplagant
une solution thixotropique et élastique de polyacrylamide (rapport de viscosité 10°). La figure
(c) illustre un fluide newtonien déplagant un fluide newtonien (rapport de viscosité 10). La
figure (d) représente un fluide de type Boger déplagant un fluide newtonien (rapport de viscosité

10).

() (d)

Figure 15.11. Illustration d’un flux radial dans une cellule Hele-Shaw. Il s’agit d’injecter successivement par le
centre de 1’'une des deux plaques paralleles deux liquides (le premier est transparent, le second opaque). (a) une
solution thixotropique et élastique de polyacrylamide (premier liquide) - un fluide newtonien (second liquide)
(rapport de viscosité 1°000); (b) une solution thixotropique et élastique de polyacrylamide - un fluide newtonien
(rapport de viscosité 100°000); (c) un fluide newtonien - un fluide newtonien (rapport de viscosité 10) et (d) un
fluide newtonien - un fluide de type Boger (rapport de viscosité 10) (reproduit de la Society of Petrolum Engineers,
E. Allen and D.V. Boger, Paper No 18097, 63rd Annual Technical Conference and Exhibition , Houston, USA,
1988).
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15.6 JET CAPILLAIRE AVEC UN NOMBRE DE REYNOLDS ELEVE

La Figure 15.12 montre la forme d’un flux avec un nombre de Reynolds (Re) élevé a la sortie
d’un trou de 6.53 mm de diametre avec en (a) une solution aqueuse 50 ppm d’un oxyde de
polyéthyleéne, et de I’eau en (b). On observe la formation rapide de turbulences en surface des
deux liquides, la transition entre zone lisse et zone turbulente ayant lieu plus tot dans le premier

cas, et la formation de gouttelettes dispersées étant également fortement réduite.

(b)

Figure 15.12. Tllustration d’un flux avec un nombre de Reynolds (Re) élevé a la sortie d’un trou de 6,53 mm de
diametre. En (a), il s’agit d’une solution aqueuse 50 ppm d’un oxyde de polyéthylene et en (b) d’eau (reproduit de
Physics of Fluids, J.W. Hoyt and J.J. Taylor, 20, 1977, S253, avec la permission de Elsevier Science).



15.10 Phénomeénes

La Figure 15.13 montre les mémes jets capillaires que ceux de la Figure 15.12, cette fois ci a
1 m de la sortie du trou. A nouveau I’apparence du jet différe suivant la composition des
liquides. On note que les gouttelettes dispersées pour 1’eau sont éliminées par 1’addition d’un

polymere de haut poids moléculaire. La surface extérieure du jet avec du polymere est aussi

beaucoup plus lisse.

(a) (b)

Figure 15.13. Tllustration d’un jet capillaire avec un nombre de Reynolds (Re) élevé a 1 m de la sortie d’un trou
de 6.35 mm. Il s’agit d’un jet d’une solution aqueuse de 200 ppm PEO en (a) et d’un jet d’eau en (b) (reproduit de
Physics of Fluids, J.W. Hoyt and J.J. Taylor, 20, 1977, S253, avec la permission de Elsevier Science).
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LISTE DES SYMBOLES

Cette liste contient les symboles qui ont ¢té utilisés dans cet ouvrage. Seuls figurent les
symboles qui ont une signification physique. On donne le symbole, sa définition, sa traduction

anglaise, son unité et la page de sa premicere apparition.

Romains

a Coefficient du mod¢le de Ellis (Ellis model coefficient) [s] 7.5
a Taille des particules (Particles size) [m] 12.5
a Grand axe de ’ellipsoide (Major ellipsoid axis) [m] 13.8
ar Coefficient de translation (Shift factor) [-] 5.1
ar Rapport des dimensions (4Aspect ratio) [-] 13.8
A Surface (Surface) [m?] 1.2
A Constante de Hamacker (Hamacker’s constant) [J] 12.6
ai,a’,A,A° Constantes (Constants) 2.4

b = 1/n Coefficient pour la correction de Rabinovitch

(Rabinovitch correction coefficient) [-] 9.4
b,b’,b;,B  Constantes (Constants) 2.4
b Largeur de la plaque (Plate width) [m] 10.13
b Petit axe de I’ellipsoide (Minor ellipsoid axis) [m] 13.8
B Largeur de la conduite (Duct width) [m] 8.2
cr Coefficient de frottement de peau (Skin friction coefficient) [-] 10.15
¢,C,C;,C> Constantes (Constants) 2.8
C1,C>  Coefficients du modele WLF (WLF model coefficients) [-1[°C] 7.13
Cp Coefficient de trainée adimensionnel

(Adimensional drag coefficient) [-] 10.16
Cr Coefficient de force adimensionnel

(Adimensional force coefficient) [-] 8.18
Ci Coefficients de la série de Prony (Prony series coefficients) [-] 4.3
CL Coefficient de portance adimensionnel

(Adimensional lift coefficient) [-] 10.16
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Q

S I S ST

Constante (Constant) 5.8
Dimension caractéristique de la géométrie d’écoulement
(Characteristic flow geometry dimension) [m] 1.17

Diameétre de la sphere ou de la fibre (Sphere or fiber diameter)  [m] 12.6

Constante (Constant) 2.5
Coefficient de diffusion (Diffusion coefficient) [m?-s7!] 5.3
Diameétre de la conduite (Duct diameter) [m] 10.4
Nombre de Deborah (Deborah's number) [-] 1.18
Diameétre hydraulique équivalent (Equivalent hydraulic diameter) [m] 10.12

Distance de diffusion due aux mouvements browniens

(Diffusion distance due to Brownian movements) [m] 12.5
Facteur de correction de Bagley (Bagley's correction factor) [-] 9.2
Charge unitaire (Unit charge) [C] 12.8
Module de Young, module élastique (Young's modulus) [Pa] 1.2
Champ ¢lectrique (Electrical field) [Vm'] 128
Module de conservation, module de stockage (Storage modulus) [Pa] 3.4
Module de perte, module de friction interne (Loss modulus) [Pa] 3.5

Module du ressort en série dans le modele SLSM

(Elastic (spring) modulus) [Pa] 2.14
Module du ressort en parallele dans le modele SLSM

(Elastic (spring) modulus) [Pa] 2.14
Module complexe (Complex modulus) [Pa] 3.11
Energie d’activation (Activation energy) [J] 4.8
Module de fluage (Creep modulus) [Pa] 1.3
Module relaxé (Relaxed modulus) [Pa] 2.15
Module non relaxé (Unrelaxed modulus) [Pa] 2.16

Energie pour une vitesse de cisaillement constante
(Energy for a constant shear rate) [J] 7.9
Energie pour une contrainte de cisaillement constante

(Energy for a constant shear stress) [J] 7.9

Facteur de frottement (Friction factor) [-] 10.4
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e

Fdrag

Fu

gelTg

Q

Fraction de volume libre (Fraction of free volume)

Fraction de volume libre a la température de transition vitreuse

(Fraction of free volume, at the glass transition temperature)
Force (Force)
Force de trainée (Drag force)

Constante d’Henry (Henry’s constant)

Accélération de la pesanteur (Gravitational acceleration)

[-]

[-]
[N]
[N]
[-]

[m-s?]

5.5

7.12
1.2
10.13

12.9

10.3

Température pour laquelle les temps de gélation et de vitrification sont égaux

(Temperature for which gelation and vitrification times are equal)

Module élastique de cisaillement (Shear modulus)
Module de stockage en cisaillement (Shear storage modulus)

Module de perte en cisaillement (Shear loss modulus)

Hauteur de la conduite (Duct height)

Distance entre particules (Distance between particles)
Hauteur piézométrique (Piezometric height)

Chaleur de réaction (Heat of reaction)

Spectre de temps de relaxation (Relaxation time spectrum)

Nombre de dimensions (Number of dimensions)

Fonction de complaisance de fluage (Retardation function)
Partie visqueuse de la fonction de complaisance de fluage
(Viscous part of the retardation function)

Complaisance non relaxée (Unrelaxed compliance)
Complaisance relaxée (Relaxed compliance)
Complaisance de conservation (Storage compliance)
Complaisance de perte (Loss compliance)

Complaisance complexe (Complex compliance)

Constante de Boltzmann (Boltzmann’s constant)
Coefficient du modele de Carreau-Yashuda

(Carreau-Yashuda model coefficient)

[Pa]
[Pa]
[Pa]

[m]
[m]
[m]
[J]
[-]

[Pa']

[Pa']
[Pa']
[Pa']
[Pa']
[Pa']
[Pa']

[J-K"]

[K]

11.11
1.1
9.10
9.10

8.2
12.6
10.3
11.3

4.6

8.16
1.12

2.16
2.16
2.16
3.7
3.7
3.11

4.8

7.4
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ke
ke
ko

> >

L1

L(75)
L[]

n
n

N

Nuwdw

Coefficient d’Einstein (Einstein’s coefficient) [-]

Coefficient de Huggins (Huggin’s coefficient) [-]

Constante cinétique (Rate constant) [s]
Module volumique (Bulk modulus) [Pa]
Coefficient des modeles de Cross et de Ellis

(Cross and Ellis models coefficient) [s]

Longueur, longeur initiale (Length, initial length) [m]
Longueur (Length) [m]

Longueur de la conduite ou de la fibre (Duct or fiber length) [m]
Spectre de retard (Retardation spectrum) [-]

Transformée de Laplace (Laplace Transform)

Paramétre du mod¢ele de Findley (Parameter of Findley’s model) [s™]

Paramétre du modéle de Bird-Leider

(Parameter of Bird-Leider’s model) [Pa-s™]
Ordre réactionnel (Reaction order) [-]
Couple (Torque) [N-m]
Masse (Mass) [kg]
Poids moléculaire critique (Critical molecular weight) [g-mol]

Poids moléculaire moyen en masse

(Weight average molecular weight) [g-mol]

Indice de pseudo-¢lasticité (Pseudo-elasticity number) [-]

Variable en analyse dimensionnelle

(Variable in dimensional analysis) [-]
Ordre réactionnel (Reaction order) [-]
Concentration ionique (lonic concentration) [-]
Nombre (Number) [-]

Rapport des interactions hydrodynamiques et de van der Waals
(Ratio between hydrodynamic and van der Waals interactions)  [-]
Premicere différence normale (First normal difference) [Pa]

Deuxieme différence normale (Second normal difference) [Pa]

13.1

13.2

11.4
I.11

7.4

1.12
8.15
8.5
4.6
2.27

2.4

12.16

11.4
9.6
8.15
7.7

6.7

6.4

8.16
11.4
12.8
13.11

12.7
1.9
1.9
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PPy

Py
Pe

R()
Ry
R
R(?)

Re

Tr

u,U

ur

Uy, Uy, Uz
Ur,Ug Uz

Uo

Pression, pression de référence (Pressure, reference pressure)  [Pa]

Périmetre de la section d’une conduite (Duct section perimeter) [m]

Opérateur différentiel (Differential operator)
Pression exercée sur le piston (Piston pressure)

Nombre de Péclet (Péclet’s number)

Opérateur différentiel (Differential operator)
Débit (Flow Rate)

Rayon de la conduite (Duct radius)

Coordonnée radiale (Radial coordinate)

Constante des gaz parfaits (kN4 ; Gaz constant)

Fonction de relaxation (Relaxation function)

Rayon du réservoir (Reservoir radius)

Rayon hydraulique équivalent (Equivalent hydraulic radius)
Partie visqueuse de la fonction de relaxation

(Viscous part of the relaxation function)

Nombre de Reynolds (Reynolds's number)

Temps (Time)

Température (Temperature)

[Pa]
[-]

[m?s]

[m]

[m]
[J-mol K]
[Pa]

[m]

[m]

[Pa]
[-]

[s]
[K]

Température de transition vitreuse (Glass transition temperature) [K]

Température de transition vitreuse du liquide non réagi

(Glass transition temperature of unreacted liquid)

[K]

Température de transition vitreuse du solide completement réticulé

(Glass transition temperature of fully crosslinked solid)

Rapport de Trouton (Trouton's ratio)

Vitesse du fluide (Flow velocity)

Vitesse de frottement (Friction velocity)

[K]
[-]

[m-s']

[m-s']

Composantes du champ de vitesse (Velocity field components) [m-s]

Composantes du champ de vitesse (Velocity field components) [m-s]

Vitesse de la plaque (Plate velocity)

[m-s']

1.9
10.12
2.6
9.1

12.7

2.6
8.7

8.5
8.6
53
1.12
9.1
10.12

2.17
1.17

1.2
2.2
53

11.11

11.11
1.18

1.7
10.6
8.3
9.6
8.5
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X,V.zZ

Grecs

a,a,q,

&y 4

Volume d’activation (Activation volume) [m?]
Vitesse d’¢lectrophorese (Electrophorese rate) [m-s]
Volume spécifique disponible (4vailable specific volume) [m?kg!]

Vitesse caractéristique du fluide (Characteristic fluid velocity) [m-s™]

Volume du fluide (Fluid volume) [m?]
Potentiel d’attraction (Attraction potential) [V]
Potentiel de répulsion (Repulsion potential) [V]
Volume libre spécifique (Specific free volume) [m*kg!]
Volume libre spécifique a Ty (Specific free volume at Tg) [m?kg!]
Volume spécifique a Ty (Specific volume at Ty) [m*kg!]
Volume spécifique occupé par les atomes (molécules) [m*kg!]
Energie (Energy) [J]
Nombre de Weissenberg (Weissenberg number) [-]
Coordonnées spatiales (Spatial coordinates) [m]
Valence ionique (Ionic valence) [-]
Avancement ou taux de la réaction (Reaction rate) [-]
Facteur d’encombrement stérique (Steric packing factor) [-]

Coefficients d’expansion thermique, a 1’état vitreux, a 1’état liquide
(Coefficients of thermal expansion, in glassy state, in liquid state) [K"]

Angle du cone (Cone angle) [°]

Exposant du modele KWW (KWW model exponent) [-]

Compressibilité, a I’état vitreux, a I’état solide (Compressibility) [Pa']

Compressibilité a 1’état vitreux, a I’état solide

(Compressibility in glassy state, in liquid state) [Pa]

4.8
12.9
5.6
1.17
10.13
14.3
14.3
5.6
5.6
5.6
5.6

3.9
1.17

1.4

12.8

114
134

56
9.7

4.4

5.8

7.11
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o(1)
o(x)

&

&

Angle de phase (Phase angle)

Entrefer (Gap)

Epaisseur de la couche visqueuse (Thickness of viscous layer)
Fonction de Dirac (Dirac function)

Couche limite (Boundary layer)

Déformation, élongation (Strain, Deformation, Elongation)
Constante diélectrique (Dielectric constant)

Vitesse de déformation (Strain rate)

Déformation initiale, amplitude de la déformation

(Initial strain, strain amplitude)

Déformation d’un amortisseur (Deformation of a dashpot)

Déformation élastique retardée, fluage primaire (Elastic after-effect) [-]

Déformation élastique instantanée

(Instantaneous elastic deformation)

Déformation volumique hydrostatique

(Hydrostatic volume deformation)

Déformation d’un ressort (Spring's deformation)
Fluage secondaire (Secondary creep)

Ecoulement visqueux, fluage secondaire (Viscous flow)

Permittivité du vide (Vacuum permittivity)

Fraction volumique des particules (Particles volume fraction)

Fraction volumique des agrégats (Volume fraction of aggregates) |[-]

Fraction volumique maximale (Maximum volume fraction)
Fraction volumique des particules seches

(Volume fraction of dry particules)

Fraction volumique des particules solvatées

(Volume fraction of solvated particules)

Viscosité dynamique (Dynamic viscosity)

Viscosité en phase (Real part viscosity)

[-]

[-]

[-]

[Pa-s]
[Pa-s]

34

9.6
10.7

2.26
10.13

1.2
12.8
2.2

24
2.7
1.15

1.15

2.7

24

1.15
12.8

13.1
13.6
135

13.7

13.7

1.1
11.7
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Me.
7.

7
T

e

7,
7,

Moo

(7]

a7

Viscosité hors phase (Imaginary part viscosity) [Pa-s]
Viscosité complexe (Complex viscosity) [Pa-s]
Viscosité apparente (Apparent viscosity) [Pa-s]
Viscosité de Casson (Casson’s viscosity) [Pa-s]
Viscosité élongationnelle (Elongational viscosity) [Pa-s]

Viscosité a la température de transition vitreuse (Viscosity at T,) [Pa-s]

Viscosité Newtonienne (Newtonian viscosity) [Pa-s]
Viscosité réduite (Reduced viscosity) (-]
Viscosité relative (Relative viscosity) (-]
Viscosité spécifique (Specific viscosity) (-]
Viscosité du solvant (Solvent viscosity) [Pa-s]

Viscosité a une vitesse de cisaillement nulle
(Zero shear-rate viscosity) [Pa-s]

Viscosité a une vitesse de cisaillement infinie

(Infinite shear-rate viscosity) [Pa-s]
Viscosité intrinseque (Intrinsic viscosity) [-]
Consistance (Consistency) [Pa-sn]

Parametre de la loi logarithmique (Logarithmic lay parameter) — [-]

Epaisseur de la double couche (Thickness of the double layer) [m]

Temps caractéristique du fluide (Characteristic time of the fluid) [s]
Coefficient du facteur de forme (Aspect ratio coefficient) [-]

Constante de temps caractéristique, temps de relaxation

(Characteristic time constant, relaxation timet) [s]
Déformation de cisaillement (Shear strain) [-]
Vitesse de cisaillement, de référence (Shear rate, reference) [s]
Vitesse de cisaillement apparent (Apparent shear rate) [s']
Vitesse de cisaillement a la paroi (Wall shear rate) [s']

Coefficient de Poisson (Poisson’s coefficient) [-]

117
117
8.13
144
1.18
7.13
13.13
132
1.6
1.6
1.6

7.1

7.1
1.6

64
10.7
12.8

1.17
13.8

10.1

1.1

1.1

89

89

I.11
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14 Viscosité cinématique (Kinematic viscosity) [me-s]=[St] 1.6
IT Produit de variable (Product of variables) [-] 8.16
P Densité, masse spécifique (Density) [g-cm] 1.6
o,0; Contrainte, contrainte initiale, amplitude de la contrainte
(Stress, initial stress, stress amplitude) [Pa] 1.2
o, Tenseur des contraintes (Stress tensor) [Pa] 19
o. Tenseur des contraintes hydrostatiques (Hydrostatic stress tensor) [Pa] 1.10
o, Tenseur déviatorique des contraintes (Deviatoric stress tensor) [Pa] 1.10
o. Contrainte d’un amortisseur (Stress of a dashpot) [Pa] 2.11
o Contrainte d’un ressort (Stress of a spring) [Pa] 2.11
o Coordonnée tangentielle (Tangential coordinate) [m] 8.6
® Température (Temperature) [K] 8.15
® Période de moyennage (Averaging period) [s] 10.5
T Contrainte de cisaillement (Shear stress) [Pa] 1.1
T, Contrainte de cisaillement a la paroi (Wall shear stress) [Pa] 9.1
To Temps de retard (Delay time) [s] 2.16
Te Temps de relaxation (Relaxation time) [s] 2.17
T Seuil d’écoulement (Yield stress) [Pa] 13.12
0] Vitesse angulaire ou pulsation (Angular frequency or pulsation) [s'] 32
¢ Déplacement en x (x-displacement) [m] 13
¢ Déplacement en y (y-displacement) [m] 1.3
¢ Potentiel zéta (Zeta potential) [V] 129



(Characteristic time of the flow process) [s]

10 Liste des symboles
w1 y2  Fonctions matérielles ou viscosimétriques
(Material or viscosimetric functions) [Pa-s:] 1.10
b4 Potentiel électrostatique (Electrostatic potential) [V] 12.8
S Temps caractéristique du procédé d’écoulement
1.18



