
 
 
 
 
 

Rhéologie 
 

et introduction à la mécanique des fluides 
 
 
 

panta rei 
 

 
                                                                    Arabia Mountain Migmatite, DeKalb County, Georgia [courtesy www.scottranger.com] 

 
 
 
 
 

Y. Leterrier 
Laboratoire de Mise en Œuvre de Composites à Haute Performance (LPAC) 

Institut des Matériaux (IMX) 
École Polytechnique Fédérale de Lausanne (EPFL) 

 
 
 
 
 

Support du cours MSE-206 destiné aux étudiants de 2ème année  
en science et génie des matériaux 

 
–  Edition 2018  – 



2 Rhéologie 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La saisie de ce cours a été réalisée sur la base des notes de cours du Professeur J.-A. E. 
Månson et du Dr. P. Kim par A. Leitner (MX 2ème année) sous la direction de Dr. P. Kim 
(LTC) ; elle a été revue par C. Servais (LTC) et Dr. A. Luciani. 
La seconde édition a été réalisée par J. Verrey (MX 2ème année) et revue par C. Servais 
(LTC). 
La troisième édition a été réalisée par J.-C. Ebinger (LTC) et revue par C. Servais (LTC). 
La quatrième édition a été réalisée par J. Kuster, F. Kohler (MX 2ème année) et revue par A. 
Sarioglu (LTC). 
La cinquième édition a été réalisée par J. Cordonier (MX 2ème année) et revue par Dr. V. 
Michaud (LTC) et A. Sarioglu (LTC). 
La sixième édition a été réalisée par M.-E. Jan et F. Mauris (MX 2ème année) et revue par Dr. 
V. Michaud (LTC) et A. Sarioglu (LTC). 
Les septième et huitième éditions ont été réalisées par Dr. V. Michaud (LTC) et Dr. D. Merhi 
(LTC) sur la base des commentaires des élèves de l'année précédente. 
La neuvième édition a été réalisée par J. Carron (MX Master) et revue par Dr. V. Michaud 
(LTC). 
La dixième édition a été réalisée par A. Lamkarfed (MX Master) et revue par Dr. V. Michaud 
(LTC). 

Les onzième et douzième éditions ont été réalisées par Dr. Yves Leterrier (LPAC). 



II Rhéologie 

 
  



 

TABLE DES MATIERES 

 

 

PREAMBULE     XI 

 

BIBLIOGRAPHIE    XII 

 

1 DEFINITIONS   

 

1.1 COMPORTEMENTS ELASTIQUE, VISQUEUX ET VISCOELASTIQUE  1.1 
 1.1.1 Comportement élastique  1.1 
 1.1.2 Comportement visqueux  1.1 
 1.1.3 Comportement viscoélastique  1.2 
 1.1.4 diagrammes du comportement (approche "ingénieur")  1.2 

1.2 TENSEUR DES CONTRAINTES  1.4 
 1.2.1 Partie hydrostatique et déviatorique  1.4 
 1.2.2 Considérations analytiques pour les calculs des contraintes  1.5 

1.3  CISAILLEMENT ET EXTENSION  1.6 
 1.3.1 Cisaillement simple  1.6  
 1.3.2 Extension   1.8 
 1.3.3 Fonctions matérielles  1.9 

1.4 CAS DE SOLLICITATIONS  1.10 
 1.4.1 Fluage   1.10 
 1.4.2 Relaxation de la contrainte   1.11  
 1.4.3 Recouvrance de la déformation  1.12 
 1.4.4 Effacement de la contrainte  1.12  
 1.4.5 Cas général  1.13 

1.5 VISCOSITE ET NOMBRES ADIMENSIONNELS  1.14 
 1.5.1 Viscosité   1.14 
 1.5.2 Nombres adimensionnels  1.15 

 

PREMIERE PARTIE : RHEOLOGIE DES SOLIDES  

 

2 MODELES MECANIQUES ET PRINCIPE DE BOLTZMANN  

 
2.1 REPRESENTATION DU FLUAGE  2.1 
 2.1.1 Courbe idéalisée pour une contrainte constante  2.1 
 2.1.2 Courbes de fluage  2.2 
 2.1.3 Courbe des modules de fluage  2.3 
 2.1.4 Courbes (isochrones) contrainte - déformation  2.3 
 2.1.5 Représentation mathématique  2.4 
 2.1.6 Une équation généralisée  2.5 



IV Rhéologie 

2.2 REPRESENTATION DIFFERENTIELLE DU COMPORTEMENT 
VISCOELASTIQUE  2.5 

2.3 LE MODELE DE MAXWELL  2.7 
 2.3.1 Fluage (Maxwell)   2.8 
 2.3.2 Relaxation (Maxwell)  2.9 
 2.3.3 Recouvrance de la déformation (Maxwell)  2.10 

2.4 LE MODELE DE KELVIN (VOIGT)  2.10 
 2.4.1 Fluage (Kelvin)  2.11 
 2.4.2 Relaxation (Kelvin)  2.12 
 2.4.3 Recouvrance de la déformation (Kelvin)  2.12 

2.5 RESUME MAXWELL/KELVIN  2.12 

2.6 LE MODELE STANDARD LINEAIRE  
 (SLSM : STANDARD LINEAR SOLID MODEL)  2.14 
 2.6.1 Fluage (SLSM)  2.15 
 2.6.2 Relaxation (SLSM)  2.16 
 2.6.3 Recouvrance de la déformation  2.18 

2.7 PRINCIPE DE SUPERPOSITION DE BOLTZMANN 2.20 
 2.7.1 Viscoélasticité linéaire  2.20 
 2.7.2 Principe de superposition  2.21 
 2.7.3 Cas spéciaux du principe de superposition de Boltzmann  2.24 

2.8 INFORMATIONS COMPLEMENTAIRES  2.26 
 2.8.1 Transformée de Laplace  2.26 
 2.8.2 Relations entre R(T) et J(T)  2.28 
 2.8.3 Exemple   2.30 

2.9  RESUME DES FORMULES PRINCIPALES  2.32 
 2.9.1 Equation générale du modèle de Maxwell  2.32 
 2.9.2 Equation générale du modèle de Kelvin (Voigt)  2.33 
 2.9.3 Equation générale du modèle standard linéaire  2.33 
 2.9.3 Remarque concernant R(t) et J(t)  2.35 

 

3 ESSAIS HARMONIQUES  

 
3.1 GENERALITES   3.1 

3.2 SOLLICITATION OSCILLATOIRE D'UN MATERIAU  3.2 
 3.2.1 Matériau élastique  3.2 
 3.2.2 Matériau visqueux (plastique)  3.3 
 3.2.3 Matériau viscoélastique  3.3 

3.3 DEFINITIONS   3.5 

3.4 COMPORTEMENT DYNAMIQUE POUR LE MODELE  
 STANDARD LINEAIRE  3.6 
 3.4.1 Contrainte sinusoïdale  3.5 
 3.4.2 Déformation sinusoïdale  3.8 

3.5 ENERGIE DISSIPEE PAR CYCLE ET PAR UNITE DE VOLUME  3.10 



 

3.6 REPRESENTATION COMPLEXE  3.11 

3.7 RESUME DES FORMULES IMPORTANTES  3.13 
 3.7.1 Contrainte sinusoïdale 3.13 
 3.7.2 Déformation sinusoïdale 3.13 
 3.7.3 Energie dissipée par cycle et par unité de volume  3.13 

 
4 MODELES DE RELAXATION ET BASES PHYSIQUES  

 
4.1 MODELE DE MAXWELL  4.2 

4.2 MODELE DE MAXWELL GENERALISE  4.3 

4.3 MODELE DE KELVIN (VOIGT) GENERALISE  4.4 

4.4 MODELE COOPERATIF KWW (EXPONENTIEL ALLONGE)  4.4 

4.5 SPECTRE DE TEMPS DE RELAXATION (STR)  4.5 

4.6 CALCUL DU SPECTRE DE TEMPS DE RELAXATION  4.7 
 Approximation d’Alfred  4.5 
 Approximation de Ferry & William s 4.5 
 Approximation de Schwarzl & Staveman  4.5 

4.7 MODELES PHYSIQUES  4.8 
 4.7.1 Modèle exponentiel (activation thermique)  4.8 
 4.7.2 Modèle exponentiel avec ‘réaction’ dans les deux sens  4.9 

 
5 EQUIVALENCE TEMPS - TEMPERATURE  

 
5.1 COURBE MAITRESSE ET COEFFICIENT DE TRANSLATION aT  5.1 

5.2 RELATION D’ARRHENIUS  5.3 

5.3 RELATION ENTRE TEMPERATURE ET MOBILITE MOLECULAIRE  5.4 

5.4 L'EQUATION WLF ET THEORIE DU VOLUME LIBRE  5.5 

5.5 INFLUENCE DE LA PRESSION SUR LE COMPORTEMENT  
 VISCOELASTIQUE  5.8 

 

 

 

DEUXIEME PARTIE : RHEOLOGIE DES LIQUIDES 

 

6 CLASSES DE LIQUIDES  

 
6.1 CLASSIFICATION ET MISE EN ŒUVRE DES POLYMERES  6.1 
 6.1.1 Structure   6.1 
 6.1.2 Mise en œuvre  6.2 



VI Rhéologie 

6.2 CLASSIFICATION DES COURBES D'ECOULEMENT  6.3 
 6.2.1 Fluides Newtoniens  6.3 
 6.2.2 Fluides non-Newtoniens  6.4 

6.3 LA VISCOSITE   6.5 

6.4 COURBE DE VISCOSITE DES POLYMERES : CAS GENERAL  6.6 

 

7 RELATIONS CONSTITUTIVES  

 
7.1 EXEMPLES DE RELATIONS  7.1 
 7.1.1 Loi de puissance  7.2 
 7.1.2 Modèle de Carreau  7.3 
 7.1.3 Modèle de Carreau-Yashuda  7.4 
 7.1.4 Autres modèles  7.4 

7.2 VISCOSITE EN FONCTION DE DIFFERENTS PARAMETRES  7.5 
 7.2.1 Vitesse de cisaillement  7.5 
 7.2.2 Temps de cisaillement  7.6 
 7.2.3 Poids moléculaire  7.7 
 7.2.4 Ajout de particules  7.8 
 7.2.5 Température et pression  7.8 

7.3 CONCEPT DU VOLUME LIBRE APPLIQUE AUX LIQUIDES  7.11 
 7.3.1 Phénoménologie  7.11 
 7.3.2 Volume libre pour η(T) et équation WLF 7.12 

7.4  RESUME DES PRINCIPAUX MODELES  7.14 
 7.4.1 Loi de puissance  7.14 
 7.4.2 Modèle de Carreau  7. 14 
 7.4.3 Modèle de Carreau-Yashuda 7. 14 
 7.4.4 Modèle de Cross  7.14 
 7.4.5 Modèle de Ellis  7.14 
 7.4.6 Température  7.14 
 7.4.7 Pression   7.15 
 7.4.8 Equation WLF  7.15 

 

8 ECOULEMENTS VISCOSIMETRIQUES  

 
8.1 INTRODUCTION  8.1 
 8.1.1 Ecoulements viscosimétriques types  8.1 
 8.1.2  Equations de conservation (fluides Newtoniens)  8.1 

8.2 ECOULEMENTS VISCOSIMETRIQUES NEWTONIENS  8.3 
 8.2.1 Ecoulement de Poiseuille dans une conduite rectangulaire  8.3 
 8.2.2 Ecoulement en cisaillement simple entre plaques parallèles 8.5 
 8.2.3  Ecoulement de Poiseuille dans une conduite circulaire  8.6 
 8.2.4 Variables d'écoulement d'un fluide newtonien  8.8 

8.3 FLUIDES NON NEWTONIENS  8.11 
 8.3.1 Ecoulement de Poiseuille dans une conduite circulaire 8.11 
 8.3.2 Ecoulement de Poiseuille dans une conduite rectangulaire  8.12 



 

 8.3.3 Variables d'écoulement d'un fluide non-Newtonien  8.13 
 8.3.4 Profils de vitesse d'écoulement  8.14 

8.4 ANALYSE DIMENSIONNELLE  8.15 
 8.4.1 Principe fondamental  8.15 
 8.4.2 Théorème de Vaschy-Buckingham pi  8.16 
 8.4.3 Analyse dimensionnelle de la force de traînée  8.17 
 

9 MESURES RHEOMETRIQUES  

 
9.1 RHEOMETRE CAPILLAIRE  9.1 
 9.1.1 Détermination de la viscosité  9.1 
 9.1.2 Correction de Bagley  9.2 
 9.1.3 Correction de Rabinowitsch  9.3 
 9.1.4 Avantages et inconvénients du rhéomètre capillaire  9.5 

9.2 RHEOMETRE DE COUETTE  9.6 
 9.2.1 Détermination de la viscosité  9.6 
 9.2.2 Cas de fluides non-newtoniens  9.7 
 9.2.3 Avantages et inconvénients du rhéomètre de Couette  9.7 

9.3 RHEOMETRE CONE – PLAQUE  9.8 
 9.3.1 Détermination de la viscosité  9.8 
 9.3.2 Avantages et inconvénients du rhéomètre cône – plaque  9.9 

9.4 RHEOMETRE A PLAQUES PARALLELES  9.9 
 9.4.1 Détermination de la viscosité  9.10 
 9.4.2 Avantages et inconvénients du rhéomètre à plaques parallèles   9.11 

9.5 EQUIVALENCE COX-MERZ  9.11 

 

10 ECOULEMENTS TURBULENTS  

 
10.1 APPARIATION DE LA TURBULENCE  10.1 

10.2 ANALYSE DE LA TURBULENCE  10.3 
 10.2.1 Hauteur piézométrique  10.3 
 10.2.2 Frottement  10.3 
 10.2.3 Résolution des équations de Navier-Stokes pour un écoulement turbulent  10.4 
 10.2.4 Influence de la rugosité des parois  10.9 
 10.2.5 Diagramme de Moody  10.10 
 10.2.6 Conduites de section non circulaire  10.12 

10.3 ECOULEMENT LIBRE AVEC CORPS IMMERGE ET COUCHE LIMITE  10.12 
 10.3.1 Définition de la couche limite  10.13 
 10.3.2 Equilibre des forces  10.13 
 10.3.3 Cas laminaire  10.15 
 10.3.4 Cas turbulent  10.16 

 
 

 



VIII Rhéologie 

TROISIEME PARTIE : RHEOLOGIE DES FLUIDES COMPLEXES 

 

11 CHEMORHEOLOGIE  

 
11.1 INTRODUCTION  11.1 

11.2 RAPPELS SUR LA RETICULATION DES THERMODURCISSABLES  11.2 
 11.2.1 Chimie de la réaction  11.2 
 11.2.2 Rhéologie de la réaction  11.4 

11.3 MESURES RHEOLOGIQUES SUR DES SYSTEMES REACTIFS  11.5 
 11.3.1 Le problème  11.5 
 11.3.2 La méthode  11.6 
 11.3.3 Mesure du temps de gel  11.9 
 11.3.4 Mesure du temps de vitrification  11.10 

11.4 LE DIAGRAMME T-T-T 11.10 

 
12 PHENOMENOLOGIE DES SUSPENSIONS ET EMULSIONS  

 
12.1 PHENOMENOLOGIE  12.1 
 12.1.1 Classification et typologie  12.1 
 12.1.2 Effets hydrodynamiques et formation de réseaux  12.2 

12.2 INTERACTIONS ET STABILITE DES SUSPENSIONS  12.3 
 12.2.1 Forces de répulsion   12.4 
 12.2.2 Le mouvement brownien  12.5 
 12.2.3 Les interactions de van der Waals  12.6 
 12.2.4 Les interactions hydrodynamiques  12.6 
 12.2.5 Les forces électrostatiques  12.7 
 12.2.6 Coagulation et floculation  12.10 
 12.2.7 Bilan des forces d’interaction et théorie DLVO  12.11 
 12.2.8 Synthèse phénoménologique des écoulements de suspensions  12.12 

12.3 EMULSIONS   12.13 
 12.3.1 Stabilité des émulsions  12.14 
 12.3.2 Inversion de phase  12.14 
 12.3.3 Exemple : la margarine  12.15 

 

13 RHEOLOGIE DES SUSPENSIONS  

 
13.1 SUSPENSIONS DE PARTICULES SPHERIQUES  13.1 
 13.1.1 Suspensions diluées  13.1 
 13.1.2 Suspensions semi-concentrées  13.2 
 13.1.3 Suspensions concentrées  13.4 

13.2 AGREGATION ET SOLVATATION DES PARTICULES  13.6 
 13.2.1 Suspensions concentrées avec formation d’agrégats  13.6 
 13.2.1 Adsorption de solvant à la surface des particules (solvatation)  13.7 

 



 

13.3 SUSPENSIONS DE PARTICULES NON-SPHERIQUES  13.8 
 13.3.1 Influence du rapport de forme  13.8 
 13.3.2 Suspensions de fibres  13.10 

13.4 EFFETS DYNAMIQUES ET SEUIL D’ECOULEMENT  13.12 
 13.4.1 Seuil d’écoulement  13.12 
 13.3.2 Modes et exemples de comportement non-newtonien  13.14 
 

14 ETUDE DE CAS  

 
14.1 LA PEINTURE   14.1 

14.2 LE CHOCOLAT  14.2 

14.3 LE FROMAGE   14.4 

14.4 L'HEMORHEOLOGIE  14.6 

14.5 BIORHEOLOGIE CELLULAIRE  14.9 

 

15 PHENOMENES  

 
15.1 EFFET WEISSENBERG  15.1 

15.2 GONFLEMENT DE FILIERE (DIE SWELL)  15.3 

15.3 VORTEX    15.5 

15.4 JET LIQUIDE EN FORME D’ARBRE  15.7 

15.5 FLUX RADIAL DANS UNE CELLULE HELE-SHAW  15.8 

15.6 JET CAPILLAIRE AVEC UN NOMBRE DE REYNOLDS ELEVE  15.9 

 

LISTE DES SYMBOLES 

 

  



X Rhéologie 

PREAMBULE 

 

 

panta  rei ... tout s’écoule 

 

 

La rhéologie est : 

 

- l’étude des processus de déformation continus et irréversibles dans le temps. 

- la science des lois de comportement des matériaux qui lient à un instant donné les  

contraintes aux déformations (élasticité, plasticité, viscosité, etc.) 

Petit Larousse (1989) 

 

 

On distingue trois champs d’application qui structurent ce document : 

 

- les solides, 

- les liquides, 

- les liquides complexes, qui comprennent les fluides réactifs, les suspensions et les 

émulsions. 
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 Rhéologie 1.1 

 

 

1 DEFINITIONS 
 

1.1 COMPORTEMENTS ELASTIQUE, VISQUEUX ET VISCOELASTIQUE 

 

Les matériaux sont traditionnellement décrits selon deux types de comportements idéaux : le 

comportement purement élastique d’une part et le comportement purement visqueux d’autre 

part. Nous considérons le cas d’une sollicitation en cisaillement pour traiter ces deux 

comportements. 

 

1.1.1 Comportement élastique 

 

Si un solide est soumis à une contrainte, il atteint un état d’équilibre : 

 

- Sa réponse est indépendante du temps. 

- Son comportement est défini par le module de cisaillement G, avec la loi : 

 
 t  = G g (1.1) 

 
où t  est la contrainte de cisaillement ou cission et g  la déformation en cisaillement. 

 

1.1.2 Comportement visqueux 

 

Si un liquide est soumis à une contrainte, il se déforme continuellement dans le temps : 

 

- Sa réponse dépend du temps d’application de la contrainte. 

- Son comportement est défini par la viscosité h, avec la loi générale : 

 
 t  = h  (1.2) 

 
où est la vitesse de cisaillement. Dans le cas général d’un fluide, h est fonction de  : 

 
  (1.3) 

 
Ces notions sont résumées dans le Tableau 1.1.  

˙ γ 

˙ γ 

€ 

˙ γ 

€ 

τ = η(˙ γ )˙ γ 



1.2 Définitions 

Tableau 1.1. Rappel des relations constitutives et géométriques pour l’état élastique et visqueux. 

 Etat élastique Etat visqueux 

Relations constitutives s = Ee 

t   =  Gg 

t = h         (fluide newtonien) 

     (fluide non newtonien) 

Relations géométriques s = F/A t = t (p, conditions externes) 

h = h (p, conditions externes) 

 

1.1.3 Comportement viscoélastique 

 

La plupart des matériaux réels comme ceux décrits au Tableau 1.2 ont un comportement qui 

se situe entre ces deux extrêmes. On parle alors d'un comportement viscoélastique. 

 

    visqueux    «    viscoélastique    «    élastique « élastique 
 

Tableau 1.2. Exemples de domaines d'application de la rhéologie. 

domaines liquides solides 

polymères 

 

 

- mise en œuvre (moulage, 
extrusion ...) 
- solution 

- fluage 

- relaxation des contraintes 

métaux 

 

- mise en œuvre (coulée) - fluage à haute température 

médecine 

 

- écoulement du sang - déformation des os (avec l’âge) 

alimentaire - procédés (boissons, 
émulsions ...)  

- résistance à la mastication 

 

 

1.1.4 Diagrammes du comportement (approche "ingénieur") 

 

Le comportement d'un matériau sous contrainte mécanique peut être représenté par divers 

diagrammes. Ces derniers permettent de mieux comprendre les phénomènes mis en jeu lors de 

l’application d’une contrainte et de décrire la réponse du matériau à long terme. Deux 

diagrammes caractéristiques de matériaux à comportement viscoélastique sont présentés ci-

dessous. 

  

˙ γ 

€ 

τ = η( ˙ γ ) ˙ γ 
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Le diagramme élongation – temps (fluage) 
 

Des courbes d'élongation en fonction du temps sont obtenues pour différentes contraintes. Si 

on prend le montage décrit à la Figure 1.1a, il est possible d’obtenir le diagramme illustré à la 

Figure 1.1b selon la charge. La courbe reliant les extrémités des courbes de fluage correspond 

à la ligne de rupture. 

 

 
Figure 1.1. (a) Schéma d’un essai à charge imposée et (b) la réponse du matériau. 

 

Le diagramme module de fluage – temps 
 

Le module effectif peut être défini comme le module de fluage. Il correspond à la pente de la 

courbe s   = f (e). Le diagramme module de fluage Ec – log(temps) permet d’étudier la 

variation du module en fonction du temps (Figure 1.2). Lorsqu’une construction est chargée, 

le module de fluage diminue en fonction du temps. Ainsi, après un temps t2, l’ingénieur doit 

compter avec un module plus bas qu’après un temps t1. 

 

 
Figure 1.2. Variation du module de fluage Ec en fonction du temps. 
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1.4 Définitions 

1.2 TENSEUR DES CONTRAINTES  

 

Les problèmes de rhéologie reliant contraintes et déformations sont généralement en 2 ou 3 

dimensions, ce qui implique une approche tensorielle. Dans le tenseur des contraintes, les 

composantes sii correspondent à des contraintes de traction/compression, alors que les 

composantes sik (avec ) correspondent à du cisaillement : 

 

 

s 

 (1.4) 

 

où les composantes du tenseur (système cartésien) sont représentées sur la Figure 1.3. 

 

 
 

Figure 1.3. Représentation des composantes du tenseur des contraintes sur un élément cisaillé. 

 

1.2.1 Tenseurs hydrostatique et déviatorique 

 

On peut décomposer le tenseur des contraintes en la somme d'un tenseur hydrostatique sD et 

d’un tenseur de trace nulle, appelé tenseur déviatorique des contraintes : 

 

 sM  = – PI (1.5) 

 

où P représente une pression hydrostatique (le signe – est une convention) 
 

€ 

i ≠ k

€ 

= 

σx x σx y σxz

σy x σy y σyz

σzx σzy σzz

# 

$ 

% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 

σyy

σyz
σyx

σxy

σxz

σxx
σzy

σzz

σzx
y

x

z

€ 

 = 

−p 0 0

0 −p 0

0 0 −p

# 

$ 

% 
% 
% 
% % 

& 

' 

( 
( 
( 
( ( 



 Rhéologie 1.5 

 

 

 sD   = s   – sM  ×  (1.6) 

 

Ainsi, lors d’un cas de sollicitation en cisaillement simple sous une pression hydrostatique P, 

on peut déduire du tenseur des contraintes la partie déviatorique : 

 

 s  (1.7) 

 

avec t1  = t2 , et donc : 

 

 sD  = s  + PI =  (1.8) 

 

1.2.2 Considérations analytiques pour les calculs des contraintes 

 

Considérons le tenseur de contrainte : 

 

 sij = sij + P = sij + 1/3 sii    avec    i, j = 1, 2, 3 (1.9) 

 

où s est la contrainte déviatorique et P la pression hydrostatique qui vaut 1/3(s11 + s22 + s33). 

On peut décrire la contrainte déviatorique et la pression en utilisant des lois similaires à la loi 

de Hooke : 

 

 sij = 2Geij (1.10) 

 P = 3Keh (1.11) 

 
où eh est la  déformation volumique (hydrostatique).  
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1.6 Définitions 

Il existe quatre constantes qui décrivent le comportement élastique d’un matériau homogène, 

isotrope : E, n, G et K. Celles-ci sont reliées entre elles pour un matériau homogène isotrope. 

Notons que : 

 
- K donne la déformation volumique, 

- G donne la déformation à volume constant. 

 
L’expérience montre que la déformation volumique ne varie pas dans le temps, tandis que la 

déformation à volume constant dépend du temps pour un matériau viscoélastique. On a : 

 

     module de Young pseudoélastique (1.12) 

     coefficient de Poisson pseudoélastique (1.13) 

 

L’hypothèse, n est constant, parfois utilisée n’est donc pas correcte. Lorsque G(t) tend vers 0, 

n tend vers 0.5 (cas d'un liquide incompressible).  

 

1.3 CISAILLEMENT ET EXTENSION 

 

1.3.1 Cisaillement simple 

 

La Figure 1.4 montre le cas du cisaillement dit simple d'un élément de matière d'épaisseur dy 

cisaillé selon l'axe x de dx à la vitesse ux.  

 

 
Figure 1.4. Géométrie du cisaillement simple. 

 

Ce cisaillement résulte de l'application de forces F parallèles et opposées, appliquées sur les 

faces supérieure et inférieure de l'élément sur ses faces d'aire A, autrement dit à une contrainte 

en cisaillement t : 

 

E(t) = 9KG(t)
3K +G(t)

ν (t) = 3K − 2G(t)
2(3K +G(t))

x

y

t

t

z

ux
dx = du dt

dy
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  (1.14) 

 
On définit également les grandeurs suivantes : 

 

- vitesse d'écoulement :  (1.15) 

- cisaillement :  (1.16) 

- vitesse de cisaillement :  (1.17) 

 

La Figure 1.5 compare le cisaillement simple, unidimensionnel, avec celui du cas plus 

général, bidimensionnel. Ces schémas considèrent ce qui passe lors d’une déformation 

infinitésimale dx sur une longueur élémentaire x.  On définit dans ce cas la déformation en 

cisaillement de la façon suivante : 

 

 
 (1.18) 

 

Si on considère le cas à deux dimensions, par un raisonnement analogue, on obtient les 

résultats suivants : 

 

  (1.19) 

 

avec x déplacement en x et z déplacement en y. 

 

      
Figure 1.5.  Description d'une déformation infinitésimale sur un élément lors d’un cisaillement simple (à gauche) 
et à deux dimensions (à droite). 
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γx 

γy dζ 
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ζ 

ξ 

ξ+dξ 

ζ+dζ 

1.3.2 Déformation de cisaillement γ  

Il y a deux façons d’aborder le problème. Dans un premier temps, il faut examiner le cas 
unidimensionnel. On a alors affaire à du cisaillement simple. La Figure 1.4 décrit ce qui passe 
lors d’une déformation infinitésimale dξ sur une longueur élémentaire ξ. On définit la 
déformation en cisaillement de la façon suivante: 

 

 
γ =

ξ + dξ( ) − ξ
dy

=
dξ
dy

 

 
Figure 1.4. (a) Description d'une déformation infinitésimale sur un élément lors d’un cisaillement simple. 

Si on considère le cas à deux dimensions, par un raisonnement analogue, on obtient les résultats 
suivants: 

 

 
γ xy =

dξ
dy

+
dζ
dx  

avec ξ : déplacement en x 
 ζ : déplacement en y 

 

 

 

   

  

 
Figure 1.4. (b) Description d'une déformation infinitésimale sur un élément lors d’un cisaillement à deux 
dimensions. 

Généralement, lors des problèmes rhéologiques, on est confronté à du cisaillement simple. Le 
terme en ζ peut être négligé. 

Des grandeurs semblables sont définies en élongation (traction pure). Pour plus de 
renseignements, il convient de se référer au cours de Milieux Continus du 3ème semestre. 
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1.8 Définitions 

Généralement, lors des problèmes rhéologiques, on est confronté à du cisaillement simple, qui 

est la façon la plus directe et la plus aisée de mesurer la viscosité d'un matériau. Il y a 

cependant des limitations : amplitude de déformation, vitesse de cisaillement restreinte 

(0.01 s-1 < < 50 s-1), sensibilité de la mesure .... 

Il est par ailleurs important de souligner que la définition de est liée au choix du référentiel. 

Soit le cas de cisaillement simple représenté à la Figure 1.6 (la plaque supérieure est en 

mouvement,  alors que la plaque inférieure reste fixe). Alors, un incrément dy > 0 correspond 

à un incrément du > 0. Ainsi, le gradient de cisaillement (= pente de la droite du profil de 

vitesse) est positif : . Par contre, si la contrainte de cisaillement est due au mouvement 

de la plaque inférieure, un incrément dy > 0 correspond à un incrément du < 0. Dès lors le 

gradient de cisaillement est négatif. On définit alors parfois dans ce cas particulier comme 

, afin qu'il soit positif, ou bien il arrive que certains prennent toujours la valeur 

absolue de la vitesse de cisaillement. 
 

        
 

Figure 1.6. Représentation du profil de vitesse dans le cas d’un cisaillement simple provoqué par le mouvement 
de la plaque supérieure (gauche) ou de la plaque inférieure (droite).

  

1.3.2.  Extension 

 

Dans le cas d’un écoulement en extension décrit à la Figure 1.7 on a le champ de vitesse : 

 

- ux =  (1.20) 

- uy = 
 

(1.21) 

- uz = 
 

(1.22) 

˙ γ 
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Figure 1.6 :  Représentation du profil de vitesse         Figure 1.7 : Représentation du profil de vitesse 
 dans le cas d’un  cisaillement simple  dans le cas d’un cisaillement simple 
 provoqué par le mouvement de  provoqué  par le mouvement de  
 la plaque supérieure.  la plaque inférieure 
 
1.5. TENSEUR DES CONTRAINTES 

Dans le tenseur des contraintes, les composantes σii correspondent à des contraintes de 
traction/compression, alors que les composantes σik (avec 

€ 

i ≠ k ) correspondent à du 
cisaillement : 
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où les composantes du tenseur (système cartésien) sont représentées sur la figure 1.8: 
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Figure 1.8 Représentation des composantes du tenseur des contraintes 
sur un élément cisaillé. 

Certaines composantes ont des noms particuliers: 

 la contrainte de cisaillement: τ = σxy, 

 la première différence normale: N1 = σxx - σyy, 

 la deuxième différence normale: N2 = σyy - σzz. 
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où les composantes du tenseur (système cartésien) sont représentées sur la figure 1.8: 
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Figure 1.7. Elément sous un écoulement en extension. 

 

La viscosité en extension hE est alors définie par : 

 
- sxx - syy = sxx - szz = hE( ) (1.23) 

- sxy = sxz = syz = 0 (1.24) 
 

1.3.3 Fonctions matérielles 

 

Un liquide viscoélastique se caractérise par trois fonctions matérielles, à savoir h, N1, N2. 

Pour le cisaillement simple on a les relations suivantes : 

 
- la viscosité en cisaillement : h( ) = sxy / = t /  (1.25) 

- la première différence normale : N1( ) = sxx - syy (1.26) 

- la deuxième différence normale : N2( ) = syy - szz (1.27) 

- y1 = N1/  (1.28) 

- y2 = N2/  (1.29) 

 

On a, en général, les inégalités suivantes : 

 
- N1 > 0 (1.30) 

- N2 < 0 (1.31) 

-  (1.32) 
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1.4 CAS DE SOLLICITATIONS 

 

Nous distinguons divers types de sollicitations : 

 

- le fluage où l’on mesure l’évolution de la déformation lorsque la contrainte s  est 

constante, 

- la relaxation des contraintes lorsque la déformation e  est constante, 

- la recouvrance de la déformation lorsqu’une contrainte constante s0 est appliquée 

pendant un laps de temps fini, puis est supprimée, 

- l'effacement de la contrainte lorsqu’une déformation constante e0 est appliquée pendant 

un laps de temps fini, puis est supprimée. 

 

1.4.1 Fluage 

 

Il s’agit d’une déformation sous une contrainte appliquée constante. Le matériau va se 

déformer sous l’effet de la contrainte au cours du temps. Le fluage est décrit par l’expérience 

illustrée à la Figure 1.8. On applique une contrainte s0 à une éprouvette et on observe une 

déformation qui varie au cours du temps. 

 

 
Figure 1.8. (a) Schéma d’un essai de fluage, (b) sollicitation du matériau et (c) sa réponse. 

 

Le fluage est associé à la fonction de complaisance de fluage J(t) : 

 

  (1.33) 
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La Figure 1.9 montre deux montages expérimentaux réalisables pour ce type d’essai. 

 

 
Figure 1.9. Essais de fluage en traction (a) et en appliquant une pression interne (b). 

 

 

1.4.2 Relaxation de la contrainte 

 

Ce cas de sollicitation consiste à appliquer au matériau une déformation ∆l et de le laisser 

allongé, tel quel, comme schématisé à la Figure 1.10. Au cours du temps, une relaxation des 

contraintes va permettre une évolution de l’état initial. 

 

 
Figure 1.10. (a) Schéma d’un essai de relaxation, (b) la sollicitation du matériau et (c) sa réponse. 

 

Comme précédemment, il convient d’introduire une fonction dite de relaxation R(t) qui décrit 

cette évolution au cours du temps : 

 

  (1.34) 
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1.4.3 Recouvrance de la déformation 

 

Ce type de sollicitation se fait en deux étapes. Dans un premier temps, on fait fluer le 

matériau, puis dans un second temps, on retire la contrainte. L’état de la contrainte est décrit à 

la Figure 1.11. 

 

 
Figure 1.11. Profil de la sollicitation lors d’un essai de recouvrance de la déformation. 

 

On observe alors une diminution de la déformation résultant de la suppression de la 

contrainte. La déformation observée est schématisée à la Figure 1.12 (cette représentation fait 

appel au principe de superposition de Boltzmann qui sera vu au Chapitre 3). Notons qu'il 

existe une recouvrance instantanée due à la réponse élastique du matériau qui n’est pas décrite 

dans la figure. 

 

 
Figure 1.12. Description et décomposition de la réponse du matériau à un essai de recouvrance de la 
déformation. 
 

1.4.4 Effacement de la contrainte 

 

Ce type de sollicitation se fait en deux étapes. Dans un premier temps, on impose une 

déformation constante à un matériau, puis on sollicite ce matériau de façon à ce qu’il retrouve 

sa longueur initiale. La sollicitation et la réponse du matériau sont illustrées à la Figure 1.13. 
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Figure 1.14. Sollicitation (courbe de gauche) et réponse (courbe de droite) du matériau à un essai d'effacement 
de la contrainte. 
 

1.4.5 Cas général 

 

Un matériau viscoélastique n’a pas exactement le comportement décrit au paragraphes 

précédents à cause de sa réponse élastique. Dans le cas par exemple d'un essai de recouvrance 

de la déformation, le matériau adopte le comportement décrit à la Figure 1.14. 

 

 
Figure 1.14. Description de la réponse d’un matériau viscoélastique à un essai de recouvrance de la déformation. 

 

On peut décomposer, comme l’indique la figure, le comportement en trois parties. Chaque 

partie à un comportement qui lui est propre. Ces parties sont les suivantes : 

 

- Déformation élastique instantanée  : cette déformation est réversible et disparaît 

lorsque la contrainte est supprimée. 

- Déformation élastique retardée  : cette déformation est également élastique mais sa 

recouvrance totale demande du temps. Cette déformation est aussi appelée fluage primaire. 

- Ecoulement visqueux  : cette déformation est irréversible et elle est appelée également 

fluage secondaire. Si on effectue un essai de recouvrance, la déformation après un temps 

infini correspondra au fluage secondaire. 
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1.5 VISCOSITE ET NOMBRES ADIMENSIONNELS 

 

1.5.1 Viscosité 

 

Il existe plusieurs définitions de la viscosité selon son utilisation, que l'on retrouvera aux 

Chapitres 6 et suivants. 

 

Viscosité dynamique h  
 

  [1 Pa×s = 10 P] (P = Poise) (1.35) 

  

 
C’est la relation usuelle qui permet de suivre la variation de la résistance à la déformation 

d’un matériau en fonction de la contrainte appliquée ou de la vitesse de cisaillement. 

 

Viscosité cinématique n 

 

  [1 m2/s = 104 St] (St = Stokes) (1.36) 

 

Pour certains problèmes, il peut être utile d’avoir un symbole représentant la viscosité divisée 

par la masse spécifique du fluide. 

 

Viscosité relative  

 

  (1.37) 

 

où h  est la viscosité d’une suspension de particules dans un solvant et h0 est la viscosité du 

solvant. On utilise cette viscosité en rhéologie des suspensions pour quantifier les effets 

hydrodynamiques de suspensions en solution (remarque : c’est une viscosité 

adimensionnelle). 

 

 

η =
τ
˙ γ 

η = f(T, p, ˙ γ ,τ)
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η
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Viscosité spécifique  

 

  (1.38)
 

 

Cette viscosité a la même fonction que la précédente (remarque : c’est une viscosité 

adimensionnelle). 

 

Viscosité intrinsèque  

 

  (1.39) 

 

où c représente la concentration de la suspension (remarque : cette valeur est généralement 

utilisée en chimie). 

 

1.5.2 Nombres adimensionnels 

 
Les nombres adimensionnels sont des rapports entre deux grandeurs de mêmes unités, 

introduits dans le cadre de la mécanique des fluides, et que l'on retrouvera dans l'ensemble du 

polycopié. 

 

Nombre de Reynolds 
 
On définit le nombre de Reynolds Re pour des liquides à viscosité h constante : 

 

  (1.40) 

 
où r est la densité, V la vitesse caractéristique du fluide et d une dimension caractéristique de 

la géométrie de l’écoulement. Le nombre de Reynolds donne le rapport entre les forces 

d'inertie et les forces visqueuses dans un écoulement. 
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Nombre de Weissenberg 
 
Le nombre de Weissenberg We est défini comme : 

 

  (1.41) 
 

Dans cette relation, l est le temps caractéristique du fluide et vaut : 

 

  (1.42) 

 
V/d est un temps caractéristique du procédé d’écoulement. Ce nombre est une expression de la 

vitesse de cisaillement et de l’amplitude de déformation. 

 
Nombre de Deborah 

 

Le nombre de Deborah De est une mesure de l’importance relative de l’élasticité dans le 

processus particulier d’un écoulement lent. L’origine de son nom vient d’une citation se 

trouvant dans la Bible (le cantique de Deborah, Juges 5.5) 'Les montagnes ruissellent devant 

Dieu'. Ce nombre est défini comme valant :  

 

  (1.43) 

 

où V est le temps caractéristique du procédé d’écoulement, et l  le temps caractéristique 

représentatif du liquide. Comme ce nombre mesure l’importance relative des effets élastiques 

par rapport aux effets visqueux, on peut considérer les deux cas limites. Pour un solide 

élastique, le nombre de Deborah tend vers l’infini, tandis que pour un fluide visqueux 

newtonien, il vaut 0. Pour le cas intermédiaire où la viscoélasticité est très prononcée, le 

nombre de Deborah va tendre vers 1. 
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Nombre de Trouton 
 

On définit le rapport de Trouton TR comme le rapport entre la viscosité d’élongation et la 

viscosité de cisaillement. La viscosité d’élongation ou d’extension est aussi appelée viscosité 

de Trouton. Ce nombre vaut : 

 

  (1.44) 

 

Pour des liquides newtoniens, ce rapport vaut 3. Pour des solutions de polymères à masse 

moléculaire élevée, il est compris entre 10 et 104. 
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2           MODELES MECANIQUES ET PRINCIPE DE BOLTZMANN 
 

2.1 REPRESENTATION DU FLUAGE 

 

La représentation graphique du comportement de matériaux sous contrainte permet de 

faciliter la recherche des lois permettant de décrire, voire de prédire ce comportement. 

 

2.1.1 Courbe idéalisée pour une contrainte constante 

 

Prenons, par exemple, le cas du fluage préalablement décrit au paragraphe 1.4.1. On peut 

alors tracer le graphique élongation - temps montré à la Figure 2.1. 

 

 
Figure 2.1. Graphique élongation - temps pour un essai de fluage à différentes contraintes. 

 

La réponse à la contrainte s  peut être divisée en trois zones : 

 

1) fluage primaire : représente la région où la vitesse de fluage diminue. L’écrouissage 

du matériau est dominant dans le cas des métaux. 

2) fluage secondaire : région où l’écrouissage est compensé par la restauration. Pour 

cette raison, la vitesse de fluage est plus ou moins constante. 

3) fluage tertiaire : région où l’affaiblissement structural de la résistance par la formation 

d’un endommagement microstructural devient important. C’est le dernier stade avant 

la rupture. 

 

Afin de mieux comprendre ce que sont réellement ces zones, il convient d’étudier la Figure 

2.2 qui décrit le logarithme de la vitesse de fluage en fonction de l’élongation. Ce graphique 
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2.2 Modèles mécaniques 

 

est en fait un plan de phase (voir K. Arbenz, A. Wohlhauser, Analyse numérique, PPUR, 

Lausanne, 1990). 

 

 
Figure 2.2. Représentation de la vitesse de déformation en fonction de la déformation. 

 

2.1.2 Courbes de fluage 

 

La Figure 2.3 montre des courbes de fluage fournissant des informations utiles pour la vie du 

matériau sous contrainte. Ces courbes nous donnent les relations entre la déformation, la 

contrainte et le temps nécessaire pour atteindre un certain état, c’est-à-dire que connaissant 

deux des trois paramètres, on peut déterminer le troisième. 

 

 
Figure 2.3. Courbes de fluage à différentes contraintes. 

 

Par exemple, on peut chercher le temps nécessaire pour obtenir une déformation donnée pour 

différentes contraintes appliquées ; on peut aussi déterminer la contrainte admissible que l’on 

peut appliquer à une structure pour un temps d’utilisation et une déformation fixés ; ou 

encore, il est possible de trouver la déformation après un temps de sollicitation et une 

contrainte donnés. 
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2.1.3 Courbes des modules de fluage 

 

Les modules de fluage sont le rapport entre les contraintes et les déformations : 

 

  (2.1) 

 

On constate qu’ils varient avec le temps lors d’une sollicitation à contrainte constante 

(fluage). Leurs variations sont représentées sur la Figure 2.4 qui est un diagramme module - 

temps. 

 
 

Figure 2.4. Courbes des modules de fluage à différentes contraintes. 
 
Ce graphique peut être construit à partir des courbes de fluage (paragraphe précédent). Les 

quatre marques présentes sur les Figures 2.3 et 2.4 correspondent entre elles. On note deux 

observations : 

 

- Ec diminue lorsque la charge augmente 

- Ec diminue lorsque le temps augmente 

 

2.1.4 Courbes (isochrones) contrainte - déformation 

 

Les courbes isochrones sont une troisième représentation graphique du fluage comme le 

montre la Figure 2.5. Ces graphes, contrairement aux deux autres, se lisent horizontalement 

ou verticalement et représentent la contrainte en fonction de la déformation pour différents 

temps de sollicitation. 

Eci( t) =
σ i

ε i (t)

σ1

σ2

 log(t)

σ1 σ2<
E

c

t
1

t
2

E
c1

(t
1
)

E
c1

(t
2
)

E
c2

(t
1
)

E
c2

(t
2
)



2.4 Modèles mécaniques 

 

 
Figure 2.5. Courbes isochrones à différents temps. (Attention, ces graphes se lisent horizontalement ou 
verticalement). 
 
Comme précédemment, il est possible de tracer ces graphes à partir des courbes de fluage. On 

a également représenté sur ces courbes isochrones les points équivalents pour les trois Figures 

2.3, 2.4 et 2.5. 

 

2.1.5 Représentation mathématique 

 

La modélisation des courbes de fluage peut se faire à l’aide de fonctions mathématiques. Une 

des nombreuses possibilités existantes consiste à utiliser la loi de puissance. Ainsi la 

déformation peut être décrite par le modèle empirique de Findley : 

 
   (2.2) 

 
Les constantes e0, m et n dépendent de plusieurs facteurs tels que : 

 
- le matériau, 

- la contrainte appliquée, 

- la température. 

 
Le fluage secondaire caractérisé par la déformation es a souvent un taux de déformation de/dt 

constant, mais dépendant de la contrainte. Il peut se caractériser par une loi du type : 

 
      et      (2.3) 
 
Les constantes A et b dépendent des facteurs suivants : 

 
- le matériau, 

- la température. 

σ
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ε 2
(t 2
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ε 1
(t 1
)
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t1 t2<

  ε(t) = ε 0 + mt n

  ε s(t) =Atσ b ˙ ε s = Aσ b
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2.1.6 Une équation généralisée 

 
Il serait intéressant et surtout pratique de pouvoir obtenir une relation décrivant au mieux le 

comportement global des matériaux au fluage. Une équation semi-empirique valable pour 

toute la plage de fluage est donnée par la somme des diverses composantes propres à chaque 

zone : 

 

  (2.4) 

 
Cette expression est représentée sur la Figure 2.6. Les divers termes correspondent à 

différentes expressions pour l’élongation sous certaines conditions. Il s’agit de : 

 
- Loi de Hooke :  (2.5) 

- Fluage du modèle de Kelvin :  (2.6) 

 (Le modèle de Kelvin sera étudié au Chapitre 3) 

- Fluage secondaire :  (2.7) 

 

 
Figure 2.6. Représentation de l’expression semi-empirique (2.4). 

 

2.2 REPRESENTATION DIFFERENTIELLE DU COMPORTEMENT VISCOELASTIQUE 

 
Pour décrire le comportement d’un matériau, il est nécessaire d’avoir à disposition des 

modèles représentant son comportement avec une bonne précision. La description générale 

d’une équation constitutive viscoélastique linéaire relie la contrainte à la déformation selon la 

relation : 

 
 Ps (t) = Qe (t) (2.8) 
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E
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Cette relation est l’équation de base permettant de caractériser le comportement d’un 

matériau, où P et Q sont des opérateurs différentiels linéaires définis tels que : 

 

     et     (2.9) 

 
où a et b sont des constantes propres au matériau. Le nombre de constantes ai, bi dépend de la 

réponse viscoélastique du matériau. 

 

  (2.10) 

 
Dans la plupart des applications, deux ou trois termes suffisent à décrire le comportement 

avec précision. Concrètement, les opérateurs différentiels peuvent être assimilés à des 

éléments mécaniques: des ressorts ou des amortisseurs, afin de décrire un comportement 

élastique, viscoélastique ou visqueux (Tableau 2.1). Le ressort décrit un matériau élastique, 

l’amortisseur un matériau visqueux. Seule la combinaison de plusieurs de ces éléments 

permet de décrire le comportement d’un matériau viscoélastique linéaire. 

 
Tableau 2.1 Présentation des éléments de base, c’est-à-dire le ressort caractérisant la contribution élastique et 
l’amortisseur correspondant à la contribution visqueuse. 
 

ressort  amortisseur 

 

 

 
  

  

 
 

  
 
Les relations décrites dans le Tableau 2.1 peuvent être reliées à l’équation générale vue à la 

page précédente. Pour le ressort, il suffit de poser : 

 
 P = 1    et    Q = E    (Þ b0 = E) (2.11) 

 
On peut procéder de même avec l’amortisseur. Ces modèles peuvent être étendus à des 

modèles en trois dimensions, mais ceux-ci deviennent très complexes et nécessitent de longs 

calculs. On se limitera dans ce cours à des modèles unidimensionnels. 
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2.3 LE MODELE DE MAXWELL 

 

Le modèle de Maxwell réunit un ressort et un amortisseur comme décrit à la Figure 2.7. 

 

 
Figure 2.7. Représentation schématique du modèle de Maxwell. 

 

Les éléments “mécaniques” sont montés en série, ce qui donne les relations suivantes : 

 

- pour la déformation :  (2.12) 

- pour la contrainte :  (2.13) 

 

En remplaçant les valeurs des déformations des éléments constitutifs par leurs expressions en 

fonction de la contrainte, on obtient : 

 

  (2.14) 

 

Ce résultat peut être obtenu en remplaçant les constantes de l’équation générale (2.9) par les 

valeurs suivantes : 

 p = 1 :     et     (2.15) 

 q = 1 :     et     (2.16) 
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2.3.1 Fluage (Maxwell) 

 

Les conditions pour ce type d’expériences sont : 

 

- s = 0    pour     t < 0 (2.17) 

- s = s0   et   
 
= 0    pour    t > 0 (2.18) 

 

Par la relation (2.14), on trouve : 

 

     pour    t > 0 (2.19) 

 

En intégrant, on trouve la relation suivante : 

 

 
    où    C est une constante d’intégration. (2.20) 

 

En utilisant les conditions initiales définies comme étant : 

 

  (2.21) 

 

on trouve la relation propre au fluage du modèle de Maxwell : 

 

  (2.22) 

 

On définit alors la fonction J(t), appelée fonction de complaisance de fluage, comme décrit à 

la page 1.12. J(t) est dans ce cas : 

 

  (2.23) 

ts est défini comme étant le temps de retard pour l’élément de Maxwell. 
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Le fluage est donc décrit par la Figure 2.8. Le modèle de Maxwell n’est pas bon pour prédire 

un fluage. 

 

 
Figure 2.8. Prédiction par le modèle de Maxwell de la réponse d’un matériau viscoélastique à un essai de fluage. 
Le modèle semble inadapté à ce type de sollicitation (cf. Figure 1.9). 
 

2.3.2 Relaxation (Maxwell) 

 

En utilisant la relation 2.14 et la condition de la sollicitation (e = constante,  = 0), on a : 

 

 
 (2.24) 

 

La relation devient : 

 

     
avec     (2.25)

 
 

On définit te   comme étant le temps de relaxation pour l’élément de Maxwell et l’on pose les 

conditions initiales qui sont: s  = s0 à t = 0, on aboutit à : 

 

    (2.26)
 

 

 

où R(t) est la fonction de relaxation comme définie au paragraphe 1.6.2. La relaxation de la 

contrainte est représentée à la Figure 2.9. 
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Figure 2.9. Prédiction par le modèle de Maxwell de la réponse d’un matériau viscoélastique à un essai de 
relaxation. Le modèle semble adapté à ce type de sollicitation. 
 

2.3.3 Recouvrance de la déformation (Maxwell) 

 

En observant les éléments constitutifs du modèle (Figure 2.7), on remarque que, lors de la 

sollicitation de recouvrance de la déformation (cf. Chapitre 1), le ressort retrouve sa longueur 

initiale, tandis que l’amortisseur garde celle qu’il avait lorsqu’on a supprimé la charge. Par 

conséquent, le modèle de Maxwell ne décrit pas un comportement viscoélastique pour ce type 

de sollicitation. 

 

2.4 LE MODELE DE KELVIN (VOIGT) 

 

Dans ce modèle, on positionne les éléments comme le montre la Figure 2.10. 

 

 
Figure 2.10. Représentation schématique du modèle de Kelvin. 

 

Les éléments “mécaniques” sont montés en parallèle, ce qui nous donne : 
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- pour la déformation :  (2.27) 

- pour la contrainte :  (2.28) 

 

On trouve la relation propre au modèle de Kelvin : 

 

  (2.29) 

 

Ce résultat est obtenu en mettant les valeurs ci-dessous dans l’équation générale 2.10 : 

 

 p = 1 :     et     (2.30) 

 q = 1 :     et     (2.31) 

 

2.4.1 Fluage (Kelvin) 

 

En procédant de manière identique au paragraphe 2.3.1, on trouve la relation suivante : 

 

    
où C est une constante d’intégration (2.32)

 
 

Avec les conditions initiales:  à t = 0, on obtient : 

 

 (2.33)
 

 
Notons que la fonction de complaisance J(t) diffère de celle du modèle de Maxwell. De 

nouveau, on définit ts   comme étant le temps de retard pour l’élément de ce modèle, et il vaut 

h/E. On peut représenter le fluage à la Figure 2.11. 
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Figure 2.11. Prédiction par le modèle de Kelvin de la réponse d’un matériau viscoélastique linéaire lors d’un 
essai de fluage. Ce modèle semble bien approprié pour ce type de sollicitation. 
 

2.4.2 Relaxation (Kelvin) 

 

En utilisant la relation constitutive du modèle de Kelvin et la condition de la relaxation 

e = constante (d’où ), on décrit la relaxation d’un simple élément élastique. Le ressort et 

l’amortisseur vont se trouver en équilibre ce qui se traduit par l’expression : 

 

  (2.34) 

 

2.4.3 Recouvrance de la déformation (Kelvin) 

 

Les conditions de cette expérience ( ) nous amènent à l’expression : 

 

  (2.35) 

 

Donc, on obtient la relation suivante : 

 

     où     ts est le temps retard et il vaut h/E  (2.36) 

 

2.5 RESUME MAXWELL/KELVIN 

 

Toutes les relations trouvées dans les paragraphes précédents concernant le modèle de 

Maxwell et celui de Kelvin sont résumées dans le Tableau 2.2. 
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Tableau 2.2. Résumé des considérations faites sur les modèles de Maxwell et Kelvin pour les trois différents 
types de sollicitations (fluage, relaxation de la contrainte et recouvrance de la déformation). 
 

 Modèle de Maxwell Modèle de Kelvin 

 

Fluage 
 

 

 

 
 

  
 ne montre pas de fluage fini 

MAUVAIS 

montre un fluage fini 

BON 

 

Recouvrance 
 

e(t) = constante 

 

 
 

 
  ne décrit pas la recouvrance 

MAUVAIS 

 

BON 

 

Relaxation 
 

 

 

s(t) = constante

 

 

  
 décrit la relaxation, mais la courbe tend  

vers 0 lorsque t tend vers l’infini. 

BON 

décrit un élément élastique 

 

MAUVAIS 
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2.6 LE MODELE STANDARD LINEAIRE (SLSM : STANDARD LINEAR SOLID MODEL) 

 

Ce modèle permet de décrire tous les comportements étudiés jusqu’à présent. Il est composé 

d’un modèle de Kelvin mis en série avec un ressort comme représenté à la Figure 2.12. 

 

 
Figure 2.12. Représentation schématique du modèle standard linéaire. 

 

Les relations constitutives propres à chacun des deux éléments sont : 

 

     et     (2.37) 

 

Les indices I et II se rapportent aux ressorts I et II. On n’arrive pas à résoudre cette équation 

directement, car on a affaire à e et de/dt. Une méthode pratique et élégante pour résoudre ce 

problème est de passer par la transformée de Laplace. Les explications de base sur cet outil 

sont données en annexe, section 2.8. On a donc (pour les indices I et II) : 

 

   (2.38) 

 
En posant eII + eI = e, on trouve : 

 

     avec     (2.39) 

  (2.40) 

 
De plus : 

  (2.41) 
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Donc : 

 

  (2.42) 

  (2.43) 

 
En appliquant Laplace inverse : 

 

  (2.44) 

 
On retrouve ici l’équation de base 2.10 du paragraphe 2.2. On retiendra la relation générale 

pour le SLSM : 

 

  (2.45) 

 
où  

 

  [s] (2.46) 

  [Pa] (2.47) 

 

2.6.1 Fluage (SLSM) 

 

On a besoin de l’équation (2.45) sous la forme : 

 

  (2.48) 

En utilisant la condition du fluage,  = 0, on trouve en posant les conditions initiales : 

 

  (2.49) 
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le résultat suivant : 

 

  (2.50) 

 

où le temps de retard ts, vaut : 

 

  (2.51) 

 

On définit J(t) comme étant la fonction de complaisance de fluage par : 

 

  (2.52) 

 

On définit aussi les modules relaxé et non relaxé : 

 

 Module non relaxé (t = 0) : Eu = EI = 1/Ju (2.53) 

 Module relaxé (t = ) :  = 1/JR (2.54) 

 

2.6.2 Relaxation (SLSM) 

 

La procédure pour la relaxation est la même que pour le fluage, avec la condition  = 0. En 

utilisant les conditions initiales, , on trouve le résultat suivant : 

 

  (2.55) 

 

où le temps de relaxation te vaut : 
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  (2.56) 

 

On définit la fonction de relaxation R(t) par : 

 

  (2.57) 

 

ainsi que les modules relaxé et non relaxé : 
 

 Module non relaxé (t = 0) : Eu = EI (2.58) 

 Module relaxé (t = ) :  (2.59) 

 

La Figure 2.13 montre une représentation des fonctions R(t) et J(t)-1 dans le temps. 

 

La Figure 2.14 explique la signification physique du temps de retard, qui se traduit par : 

 

  (2.60) 

 

où Rv est le module exempt de la partie élastique. Le temps de retard est donc le temps 

nécessaire pour réduire la partie non-élastique du module d’un facteur e = 2.718. On peut 

procéder de même pour le temps de relaxation te. 

 

  
Figure 2.13. Représentation des fonctions R(t) et J(t)-1 
dans le temps. 

Figure 2.14. Graphique expliquant la signification 
physique du temps de retard. 
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2.6.3 Recouvrance de la déformation 

 

La recouvrance est la tendance d’un matériau viscoélastique à revenir à son état de contrainte 

interne nul, après que la contrainte externe a été supprimée à un certain temps t1. La 

recouvrance n’est pas instantanée comme on peut le voir sur la Figure 2.15. 

 

 
Figure 2.15. Sollicitation (a) et réponse (b) du matériau lors d’un essai de recouvrance de la déformation. 

 

En intégrant l’équation (2.45) sous la forme vue au paragraphe 2.6.1 : 

 

  (2.61) 

 
On peut trouver la déformation à t > t1. 

 

Il faut diviser l’intervalle de temps [0 ; t] en deux intervalles : [0 ; t1], qui représente la durée 

de chargement et [t1 ; t], qui est l’intervalle de temps après le relâchement de la contrainte. On 

devrait normalement diviser l’intervalle de temps en quatre intervalles : [0-; 0+], ]0+; t1-[,       

[t1-; t1+] et ]t1+; t[, car il existe une déformation élastique instantanée entre 0- et 0+ et entre t1- 

et t1+. Ici, nous allons simplifier le problème et dire que les temps de chargement et de 

déchargement de la contrainte sont infiniment petits. 

 

Pour l’intervalle [0 ; t1] 
 

La contrainte est constante et vaut s0, donc . L’équation à intégrer devient : 

 

  (2.62) 
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2.6.3 Recouvrance de la déformation 

La recouvrance est la tendance d’un matériau viscoélastique à revenir à son état de 
contrainte interne nul, après que la contrainte externe a été supprimée à un certain temps t1. La 
recouvrance n’est pas instantanée comme on peut le voir sur la figure 2.17. 

 

 

 

 

   
Figure 2.17 Sollicitation (a) et réponse (b) du matériau lors d’un essai 

de recouvrance de la déformation. 

En intégrant l’équation (2.3) sous la forme vue au paragraphe 2.6.1: 
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On peut trouver la déformation à t > t1. 

Il faut diviser l’intervalle de temps [0 ; t] en deux intervalles : [0 ; t1], qui représente la 
durée de chargement et [t1 ; t], qui est l’intervalle de temps après le relâchement de la 
contrainte. On devrait normalement diviser l’intervalle de temps en quatre intervalles : [0-; 
0+], ]0+; t1

-[, [t1
-; t1

+] et ] t1
+; t[, car il existe une déformation élastique instantanée entre 0- et 0+ 
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+. Ici, nous allons simplifier le problème et dire que les temps de chargement et 
de déchargement de la contrainte sont infiniment petits. 

- Pour l’intervalle [0 ; t1] : la contrainte est constante et vaut σ0, donc 
  
dσ
dt

= 0 . 

L’équation à intégrer devient : 

 

€ 

dε
dt

+
EII

η
ε =

EI + EII
EIη

σ0  

Pour faire l’intégration, on met la relation sous la forme : 

 

  

dε
EI + EII

EI η
σ

0
−

EII

η
ε

ε 0( )=
σ0

EI

ε t
1( )
∫ = dt

0

t1

∫  

€ 

dε
dt

+
EII
η
ε =

EI + EII
EIη

σ +
1
EI
dσ
dt

  
dσ
dt

= 0

€ 

dε
dt

+
EII

η
ε =

EI + EII
EIη

σ0
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Pour faire l’intégration, on met la relation sous la forme : 

 

  (2.63) 

 

En effectuant le calcul, on aboutit à la relation suivante : 

 

  (2.64) 

 

Après avoir isolé e (t1) et à partir des définitions de ER et ts, l’équation devient : 

 

  (2.65) 

 

Pour l’intervalle [t1 ; t] 
 

La contrainte est nulle, donc . De plus, e (t1+) = e (t1-) - eélastique = e (t1-) -  

 

  (2.66) 

 

Puis, sur [t1 ; t], l’équation à intégrer prend la forme suivante : 

 

  (2.67) 

 

En introduisant les bornes d’intégration, l’équation devient : 

 

  (2.68) 

  

dε
EI + EII

EI η
σ

0
−

EII

η
ε

ε 0( )=
σ0

EI

ε t
1( )
∫ = dt

0

t1

∫

€ 

−
η
EII

ln EI+EII

EIη
σ0 −

EII
η

ε t1( )
& 

' 
( ) 

* 
+ − ln EI+EII

EIη
σ0−

EIIσ0
ηEI

& 

' 
( ) 

* 
+ 

, 

- . 
/ 

0 1 
= t1

€ 

ε t1( ) =
σ0
EII

1−exp −
t1
τσ

& 

' 
( ) 

* 
+ 

& 

' 
( 

) 

* 
+ +

σ0
EI

  
σ t( ) = dσ

dt
= 0

€ 

σ0
EI

€ 

ε t
1
+( ) =

σ0
EII

1−exp −
t
1

τσ

& 

' 
( ) 

* 
+ 

& 

' 
( 

) 

* 
+ 

€ 

dε
dt

+
EII

η
ε = 0

  

€ 

dε
ε

ε t1+( )

ε t( )

∫ =−EII
η dt

t1+

t

∫
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Le calcul donne : 

 

  (2.69) 

 
La déformation totale vaut alors : 

 

  (2.70) 

 
Il faut remplacer e (t1+) par sa valeur calculée précédemment et on obtient : 

 

 (2.71) 

 

2.7 PRINCIPE DE SUPERPOSITION DE BOLTZMANN  

 

2.7.1 Viscoélasticité linéaire 

 

Le comportement viscoélastique linéaire est un comportement appelé thermorhéologique 

simple, c’est-à-dire qu’il n’y a pas de changement de phase, ni de changement de 

microstructure. On représente graphiquement ce genre de comportement à la Figure 2.16. On 

note que les courbes normalisées se superposent toutes. Il y a une validité réelle pour la 

plupart des matériaux si on travaille en petites déformations (e ≤ 1 %). Pour la suite, on se 

bornera à des petites déformations. Un matériau thermorhéologiquement simple satisfait le 

principe de superposition temps-température qui fera l'objet du Chapitre 5. 

 

 
Figure 2.16. Représentation graphique d’une conséquence de la viscoélasticité linéaire. 
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Ainsi, la fonction de relaxation R(t) ne dépend pas de l’amplitude de la déformation et la 

fonction de complaisance J(t) de l’amplitude de la contrainte. Pour un mouvement 

oscillatoire, E’ et E” et h ne dépendent pas de la déformation (voir Chapitre 3). 

 

2.7.2 Principe de superposition 

 

Ce principe proposé par Boltzmann permet d’étudier la réponse d’un matériau soumis à une 

combinaison de sollicitations. Le principe énonce que la réponse à la somme des sollicitations 

est égale à la somme des réponses que le matériau subirait s’il était soumis aux sollicitations 

correspondantes prises isolément. 

 

Nous allons illustrer le principe de superposition de Boltzmann avec deux exemples de 

sollicitation. La première sollicitation (recouvrance de déformation) et se décompose en deux 

étapes. Lors de la première étape le matériau flue sous une contrainte constante (Figure 2.17). 

Lors de la seconde étape, une contrainte opposée et de même valeur que celle de la première 

étape est ajoutée à partir d’un temps t1 (Figure 2.18).  

 

 
Figure 2.17. Sollicitation (a) et réponse (b) du matériau correspondant à la première étape de la recouvrance de la 
déformation. 
 

 

 
Figure 2.18. Sollicitation (a) et réponse (b) du matériau correspondant à la seconde étape de la recouvrance de la 
déformation. 

t1 t

σ

(a)
t1 t

ε

(b)

t1 t

ε

t1 t

σ

(a) (b)
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Son comportement est décrit par les relations suivantes (les indices 1 et 2 correspondent à la 

première étape et à la deuxième étape) : 

 
 Pour t < t1 : s1 = s0 et e1 = s0 J(t) 

 Pour t > t1 : s2 = -s0 et e2 = -so J(t – t1) 

 
Le comportement global (s = s1 + s2 et e = e1 + e2) est décrit à la Figure 2.19. 

 

 
Figure 2.19. Sollicitation globale (a) et réponse globale (b) du matériau lors d’un essai de recouvrance de la 
déformation. 
 
 
La déformation globale est donc donnée par : 

 
 e  = s0J(t)    pour    0 < t < t1 (2.72) 

 e  = s0J(t) - s0J(t – t1) = s0[J(t) - J(t – t1)]    pour    t ≥ t1 (2.73) 

 
La comparaison de cette sollicitation avec la recouvrance de la déformation (paragraphe 

2.6.3) est intéressante, car les deux phénomènes se ressemblent beaucoup. On remarque pour 

la superposition de Boltzmann, qu’à partir d’un temps t1, il y a deux contraintes opposées et 

de même valeur qui s’annulent. Pour la recouvrance de la déformation, la contrainte initiale 

est tout simplement supprimée à un temps t1. 

 

Considérons maintenant une seconde sollicitation, représentée à la Figure 2.20. 

 

 
Figure 2.20. Sollicitation (a) et réponse (b) d’un matériau visco-élastique linéaire. 
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On peut alors écrire la réponse (déformation) : 

 

 e (t) = s1J(t – t1)    pour     t1 < t < t2 (2.74) 

 e (t) = s1J(t – t1) + s2J(t – t2)    pour     t ≥ t2 (2.75) 

 

Dans l'exemple suivant, on voit que les déformations ei(t) = J(t – ti)si s'additionnent comme 

les contraintes si . Cela donne : 

 

  (2.76) 

 

On pose la relation élémentaire : 

 

  (2.77) 

 

Pour connaître la valeur de e, il faut prendre en compte l’histoire de t  (t), c’est-à-dire depuis  

]-¥, t], on procède à une intégration : 

 

  (2.78) 

 

N.B. En général, les bornes d’intégration correspondent au début de la combinaison de 

sollicitations et à l’instant t de la mesure. 

 

On peut procéder de la même manière si la sollicitation est une déformation et l’on trouve : 

 

  (2.79) 

 

 

 

 

ε(t) = ε i (t) = J(t − t i )
i
∑

i
∑ σ i

dε = dσJ(t −τ )

ε(t) = J(t − τ )
−∞

t

∫ dσ(τ ) = J(t −τ )
−∞

t

∫
∂σ(τ )
∂τ

dτ

σ(t) = R(t −τ )
−∞

t

∫
∂ε(τ )
∂τ

dτ
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2.7.3 Cas spéciaux du principe de superposition de Boltzmann 

 
Rampe de sollicitation 
 

Prenons une mise en charge à vitesse constante  dans un intervalle de temps [t1, t2]. Le 

graphique de la Figure 2.21 nous montre un tel cas. 

 

 
Figure 2.21. Sollicitation à vitesse de charge constante dans un intervalle de temps. 

 

D’après le principe de superposition de Boltzmann, on a la relation suivante : 

 

  (2.80) 

 

Il nous faut, tout d’abord, déterminer la vitesse de charge et résoudre l’intégrale pour tous les 

intervalles de temps (]-¥, t1], [t1, t2], [t2, ¥[). 

 

Dans l’intervalle ]-¥, t1] : 

 

  (2.81) 

 

Dans l’intervalle [t1, t2] : 

 

  (2.82) 

˙ σ 
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2.7.3 Cas spéciaux du principe de superposition de Boltzmann (PSB) 

2.7.3.1 Rampe de sollicitation 

Prenons une mise en charge à vitesse constante ˙ σ  dans un intervalle de temps [t1, t2]. Le 
graphique de la figure 2.23 nous montre un tel cas. 

Figure 2.23. Sollicitation à vitesse de charge constante dans un 
intervalle de temps. 

D’après le principe de superposition de Boltzmann, on a la relation suivante: 

 ε(t) = J(t −τ )
−∞

t

∫ ˙ σ dτ  

Il nous faut, tout d’abord, déterminer la vitesse de charge et résoudre l’intégrale pour tous 
les intervalles de temps (]-∞,t1], [t1, t2], [t2, ∞[). 

Dans l’intervalle ]-∞,t1]: 

 ε(t) = 0 ⋅ J(t − τ )
−∞

t

∫ dτ = 0  

Dans l’intervalle [t1, t2]: 

 ε(t) = 0 ⋅ J(t − τ )
−∞

t1

∫ dτ + ˙ σ ⋅ J(t − τ )
t1

t

∫ dτ = ˙ σ ⋅ J(t − τ )
t 1

t

∫ dτ  

Dans l’intervalle [t2, ∞[: 

 ε(t) = 0 ⋅ J(t − τ )
−∞

t1

∫ dτ + ˙ σ ⋅ J(t − τ)
t1

t2

∫ dτ + 0 ⋅ J(t −τ )
t 2

t

∫ dτ = ˙ σ ⋅ J(t − τ)
t1

t2

∫ dτ  

Il suffit, maintenant, de résoudre l’intégrale pour un temps donné. 

Si la sollicitation est en déformation, on peut procéder de la même manière pour obtenir la 
contrainte sur tous les intervalles de temps. 

ε t( )= J t −τ( )
−∞

t

∫ ⋅ !σ ⋅dτ

ε t( )= J t −τ( )
−∞

t

∫ ⋅0⋅dτ =0

ε t( )= J t −τ( )
−∞

t1∫ ⋅0⋅dτ + J t −τ( )
t1

t

∫ ⋅ !σ ⋅dτ = J t −τ( )
t1

t

∫ ⋅ !σ ⋅dτ
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Dans l’intervalle [t2, ¥[ : 

 

 (2.83) 

 

Il suffit, maintenant, de résoudre l’intégrale pour un temps donné. 

 

Si la sollicitation est en déformation, on peut procéder de la même manière pour obtenir la 

contrainte sur tous les intervalles de temps. 

 
Sollicitation échelon 
 

Prenons une mise en charge que l’on appelle échelon. Le graphique de la Figure 2.22 nous 

montre ce genre de sollicitation. 

 
Figure 2.22. Sollicitation en échelon. 

 

D’après le principe de superposition de Boltzmann, on a la relation suivante : 

 

  (2.84) 

 
Le problème de la résolution de cette intégrale réside dans la détermination de la vitesse de 

sollicitation  qui est définie comme : 

 

  = ¥    si    t = t1     et      = 0    si     t ≠ t1 (2.85) 

 

Toutefois, il existe une fonction mathématique qui possède cette propriété, il s’agit de la 

fonction de Dirac d  : 

 

ε t( )= J t −τ( )
−∞

t1∫ ⋅0⋅dτ + J t −τ( )
t1

t2∫ ⋅ !σ ⋅dτ + J t −τ( )
t2

t

∫ ⋅0⋅dτ = J t −τ( )
t1

t2∫ ⋅ !σ ⋅dτ

ε

t
t1

ε0

σ t( )= R t −τ( )
−∞

t

∫ ⋅ !ε ⋅dτ

˙ ε 

˙ ε ˙ ε 
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 d (t – t1) = ¥    si    t = t1    et    d (t – t1) = 0    ailleurs (2.86) 

 

De plus, cette fonction a les propriétés suivantes : 

 

     et     (2.87) 

 

Il existe une équivalence entre  et la fonction de Dirac : 

 

  = e0 d(t - t1) (2.88) 

 

Comme dans le cas précédent, on décompose l’axe du temps en intervalle (]-¥, t1[, ]t1, ¥[), ce 

qui donne : 

 

Dans l’intervalle ]-¥, t1[ : 

 

  (2.89) 

 
Dans l’intervalle ]t1, ¥[ :  

 

 (2.90) 

 

Si la sollicitation est en contrainte, on peut procéder de la même manière pour obtenir la 

déformation sur tous les intervalles de temps. 

 

2.8 INFORMATIONS COMPLEMENTAIRES 

 

2.8.1 Transformée de Laplace 

 

Cet outil mathématique va faciliter certains calculs. On rappelle qu’il permet de trouver les 

solutions d’équation différentielles. Nous l’avons déjà utilisé au paragraphe 2.6. On définit la 

transformée de Laplace comme : 

δ τ − t1( )dτ
−∞

∞

∫ = δ τ − t1( )dτ
t1
-

t 1
+

∫ = 1

˙ ε 

˙ ε 

σ t( )= R t −τ( )
−∞

t

∫ ⋅0⋅dτ =0

σ t( )= R t −τ( )
−∞

t1−∫ ⋅0⋅dτ + R t −τ( )
t1−

t1+∫ ⋅ε0δ τ −t1( )⋅dτ + R t −τ( )
t1+

t

∫ ⋅0⋅dτ = ε0R t −t1( )

δ τ − t1( )R t1 −τ( )
t1

t

∫ dτ = R t − t1( )



 Rhéologie 2.27 

 

 

 

  (2.91) 

 
En considérant, les conditions d’existence suivantes : 

 

- f(t) continue par partie pour t > 0 

- f(t) d’ordre exponentiel1 quand t  

 
La transformée d’une dérivée est : 

 

 
 (2.92) 

La transformée inverse est définie telle que :  

 

 si  (2.93) 

 

L’intégrale de convolution est définie comme étant : 

 

  (2.94) 
 

Ainsi : 

 

   (2.95) 

 

Cette dernière relation peut, par exemple, s’appliquer au modèle standard. 

 

Il existe de nombreuses tables donnant les valeurs des transformées de Laplace, par exemple : 

Abramowitz and Stegun, Handbook of Mathematical Functions, Dover Publications, 1972, 

New-York. 

                                                
1 une fonction est dite d'ordre exponentiel s'il existe des constantes réelles T > 0, a > 0 et K > 0 telles que abs(f(t)) ≤ Kexp{at} 
pour tout t > T 

L[f(t)] = F(s) = e−st
0

∞

∫ f(t)dt

€ 

→∞

  
L[ !f (t)]= e−st !f (t)dt

0

∞

∫ = e−stf(t)%
&

'
(0

∞
+s e−stf(t)

0

∞

∫ dt = sL[f(t)]− f(0)

€ 

L[f(t)] = f (s)⇒ f(t) = L-1[f (s)]

€ 

f(t)*g(t) = f(τ)
0

t

∫ g(t −τ )dτ

€ 

L[f(t)*g(t)] = f (s)g (s)
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2.8.2 Relations entre R(t) et J(t) 
 

On a vu précédemment que généralement, R(t) et J(t) se décomposent en deux parties 

distinctes : une partie élastique (indépendante du temps) et une partie visqueuse (dépendante 

du temps). De façon générale, on peut écrire ces deux fonctions de la manière suivante : 

 

  (2.96) 

 

RV(t) et JV(t) peuvent avoir les formes exponentielles ou linéaires comme celles présentées au 

début du chapitre, mais elles peuvent également prendre d’autres formes comme, par 

exemple, a + bt 
n (voir Chapitre 4). 

 

Il est important de savoir si la partie élastique est comprise dans une fonction de relaxation 

donnée pour résoudre correctement des superpositions de contrainte ou de déformation selon 

le principe de Boltzmann. 

 

Par ailleurs, nous avons vu que la fonction de complaisance de fluage et la fonction de 

relaxation étaient reliées par : 

 

 R(t)J(t)  1    ou    J(t)   (2.97) 

 

Cette approximation donne une erreur typique de : 

 

- environ 15% pour la composante fonction de temps 

- < 1% quand les déformations élastiques sont prises en compte 

 

On peut trouver la solution exacte en utilisant l’intégrale de convolution (paragraphe 2.8.1). 

Soient deux fonctions f(t) et g(t). On définit h(t) tel que les transformées de Laplace soient 

reliées par : 

 

R(t) = ER + RV (t)

J(t) = 1
ER

+ JV(t)

≈ ≈ 1
R(t)
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  (2.98) 

 

Or, on a par définition : 

 

  (2.99) 

 

Par conséquent : 

 

  (2.100) 

 

Pour les modules, on a : 

 

     et     (2.101) 

 

La transformée du principe de superposition de Boltzmann donne, sachant que : 

 

  (2.102) 

et  

 

  (2.103) 

 

Alors : 

 

  (2.104) 

 

Par ailleurs, d’après la table des transformées des fonctions :  

 

h (s) = f (s)g (s)

€ 

f (s)g (s) = L[f(t)*g(t)] = L f(τ)
0

t
∫ g(t −τ)dτ% 
& ' 

( 
) * 

L−1[h (s)] = f(τ )
0

t
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J (s) = e−st

0

∞

∫ J(t)dt R (s) = e−st

0

∞

∫ R(t)dt
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ε(t) = J
0

t
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dt
dτ = ˙ σ (t) * J(t)
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t

∫ ⋅dε
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⋅dτ = !ε t( )∗R t( )

€ 
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& 
⇒ L−1[J (s)R (s)] = L−1 1

s2
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* + 
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  (2.105) 

 

On aboutit donc au résultat : 

 

 (2.106) 

 

On voit qu’en connaissant une des fonctions, on peut déterminer l’autre. 

 

2.8.3 Exemple 

 

Soit le module relaxant du polychlorure de vinyle : R(t) = 22'800 t 
-0.305 [MPa] avec t en [s]. 

Déterminez la fonction de complaisance. 

 

On voit que le module relaxant est de la forme At 
n. Dans les tables (voir référence à la fin du 

paragraphe 2.8.1, page 1022), on trouve : 

 

     Þ        (2.107) 

 

La fonction G est la fonction factorielle ou Gamma d’Euler, dont une des propriétés est : 

 

  (2.108) 

 

On calcule la transformée de R(t) : 

 

  (2.109) 

 

Avec la relation  trouvée au paragraphe 2.8.2, on a : 

 

€ 

L[t] =
1
s2

J(τ )R(t − τ )dτ
0

t

∫ = R(τ )J(t −τ )dτ
0

t

∫ = t

F(t) = tk −1

€ 

L F(t)[ ] = F (s) =
Γ(k)

ks

Γ(1− n)Γ(1 + n) = sin(πn)
πn

L R(t)[ ] = R (s) = 22800 Γ(1− 0.305)
s1-0.305

J (s)R (s) = 1
s2
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  (2.110) 

 

d’où : 

  (2.111) 

 

or, 

  (2.112) 

 

donc : 

 

  (2.113) 

 

On trouve : 

  (2.114) 

 

Et finalement : 

 

  (2.115) 

 

On remarque que J(t)R(t) = 0.8539 ≠ 1. 

 

  

J (s) = 1
s2R (s)

=
s1−0.305

22800Γ(1− 0.305)s2 =
1

22800Γ(1− 0.305)s1+ 0.305

J(t) = L−1 J (s)[ ] = 1
22800Γ(1− 0.305)

L 1
s1+ 0.305[ ]

1
s1+ 0.305

=
Γ(1 + 0.305)

Γ(1 + 0.305)s1+0.305

L−1 1
s1+ 0.305
" 
# 

$ 
% 

=
t0.305

Γ(1+ 0.305)

J(t) = t0.305

22800Γ(1− 0.305)Γ(1 + 0.305)
=

0.305πt0.305

22800sin(0.305π )

J(t) = 37.450 ⋅10−6 t0.305
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2.9 RESUME DES FORMULES PRINCIPALES 

 

 

2.9.1 Equation générale du modèle de Maxwell 

 

  (2.116) 

 
Fluage (Maxwell) 

 

(2.117) 

     avec     (2.118) 

 

Relaxation (Maxwell) 
 

     
avec    

 (2.119) 

  (2.120) 

 

 

 

dε
dt

= 1
E
dσ
dt

+ 1
η
σ

ε t( ) = σ 0

η
t + σ 0

E
= σ 0

E
1+ E

η
t⎛

⎝⎜
⎞
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= J t( )σ 0

J(t) = E−1 1 +
t
τσ

$ 

% 
& ' 

( 
) τσ =

η
E

η
E
dσ
dt

+σ = τ ε
dσ
dt

+σ = 0 τε =
η
E

σ(t) = σ 0 exp −
t
τε

% 

& 
' ( 

) 
* = ε0E exp −

t
τε

% 

& 
' ( 

) 
* = R(t) ⋅ε0

 

REMARQUE IMPORTANTE 

 

- lors de la pose d’éléments en série, les déformations de chacun d’eux 

s’additionnent alors que la contrainte est la même pour chaque élément. 

- lors de la pose d’éléments en parallèle, les contraintes de chacun d’eux 

s’additionnent alors que la déformation est la même pour chaque élément. 
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2.9.2 Equation générale du modèle de Kelvin (Voigt) 

 

  (2.121) 

 

Fluage (Kelvin) 
 

     
avec    

 (2.122) 

 

Relaxation (Kelvin) 
 

  (2.123) 

 

Recouvrance de la déformation (Kelvin) 
 

     pour     t > t1 (2.124) 

 

où ts  est le temps de retard qui vaut h/E . 

 

2.9.3 Equation générale du modèle standard linéaire  

 (SLSM : Standard Linear Solid Model) 

 

  (2.125) 

 

où:  [s]    et     [Pa] (2.126) 
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2.34 Modèles mécaniques 

 

Fluage (SLSM) 
 

  (2.128) 

  (2.129) 

  (2.130) 

 

 Module non relaxé (t = 0) : Eu = EI = 1/Ju (2.131) 

 Module relaxé (t = ) :  = 1/JR (2.132) 

 
Relaxation (SLSM) 
 

  (2.133) 

  (2.134) 

  (2.135) 

 Module non relaxé (t = 0) : Eu = EI (2.136) 

 Module relaxé (t = ) :  (2.137) 

 
Recouvrance de la déformation 
 

     pour    t > t1 (2.138) 
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2.9.4 Remarque concernant R(t) et J(t) 
 

  (2.139) 

 

 

   

R(t) = ER + RV (t)

J(t) = 1
ER

+ JV(t)
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3 ESSAIS HARMONIQUES 
 

En dehors des expériences de fluage et de relaxation, il existe, en viscoélasticité linéaire, un 

autre type d’expérience qui présente un intérêt fondamental et qui consiste à étudier le matériau 

de façon oscillatoire, en lui imposant une contrainte (ou déformation) qui varie sinusoïdalement 

au cours du temps. La linéarité des équations entraîne que la déformation (ou contrainte) est 

également sinusoïdale et de même fréquence. 

 

3.1 GENERALITES 

 

On fixe un barreau d'essai dans la machine et on le sollicite en torsion avec : 

 

- une masse libre (résonance) 

- un moteur à une fréquence spécifique (oscillation forcée) 

 

On obtient le comportement en fonction de la déformation et de la vitesse de sollicitation. Les 

fréquences de vibration typiques sont données à la Figure 3.1. 

 

 
Figure 3.1. Les fréquences de vibration typiques avec leur phénomène. 

 

La vitesse de sollicitation, de/dt, exerce une influence importante sur la réponse mécanique d'un 

matériau viscoélastique. 
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3.2 Essais harmoniques 

3.2 SOLLICITATION OSCILLATOIRE D'UN MATERIAU 

 

3.2.1 Matériau élastique 

 

Lorsqu’on soumet un matériau purement élastique à un essai harmonique, la réponse est en 

phase avec la sollicitation. Ce phénomène est décrit à la Figure 3.2. 

 

 
Figure 3.2. Sollicitation et réponse d’un matériau élastique à un essai harmonique. 

 

On représente généralement la déformation et la contrainte en fonction du produit entre le temps 

et la fréquence. Ce produit est un temps adimensionnel. Cette astuce permet d’obtenir une 

courbe normalisée pour toutes les fréquences. En effet, lors d’essais à différentes fréquences 

pour le même matériau, on obtient une seule et même courbe ; tandis que si on représentait la 

sollicitation et la réponse en fonction du temps, on obtiendrait autant de courbes que de 

fréquences testées. Les relations sont du type : 

 

 e = e0 sin(w t)    et    s = s0 sin(w t) (3.1) 

 

Il est important de noter que la sollicitation doit impérativement rester dans le domaine élastique 

linéaire du matériau considéré, quelle que soit la nature de celui-ci. La zone élastique est 

représentée à la Figure 3.3. 

 

ε(t)

σ(t)

σ, ε

ωt
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Figure 3.3. Représentation de la zone admissible de sollicitations pour ce genre d’essai. 

 

3.2.2 Matériau visqueux (plastique) 

 

Pour un matériau totalement visqueux, la sollicitation et la réponse sont déphasées d’un quart 

de période. Leurs représentations sont illustrées à la Figure 3.4. 

 

 
Figure 3.4. Sollicitation (e) et réponse (s) d’un matériau anélastique à un essai harmonique. 

 

Les relations sont pour une sollicitation en déformation : 

 

 e = e0 sin(w t)    et    s = s0 sin(w t + π / 2)    car    s = h de/dt (3.2) 
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3.4 Essais harmoniques 

3.2.3 Matériau viscoélastique 

 

Pour un matériau viscoélastique, la représentation de la sollicitation et de la réponse se trouvent 

à la Figure 3.5. On s’aperçoit que le déphasage n’a pas une valeur définie, mais dépend du 

matériau et des conditions de l’essai. 

 
Figure 3.5. Sollicitation (e) et réponse (s) d’un matériau viscoélastique à un essai harmonique. 

 

Comme e a un décalage de phase quelconque par rapport à s, on a les relations suivantes (on 

considère le cas où la sollicitation est en déformation) : 

 

 sollicitation :  

 réponse :  (3.3) 

 

où d est l’angle de perte ou déphasage. En utilisant des relations trigonométriques, on obtient : 

 

 sollicitation :  

 réponse :  (3.4) 

 

où l’amplitude en phase avec la déformation e (t) est  et l’amplitude en opposition de 

phase avec la déformation e (t) est . 

 

  

ε(t)

σ(t)

σ, ε

ωt

déphasage δ

ε = ε0 sin(ω t)

σ = σ 0 sin(ω t +δ )

ε = ε0 sin(ω t)

σ = σ 0 sin(ω t) cos(δ ) + σ0 cos(ω t)sin(δ)

σ0 cos(δ)

σ0 sin(δ )
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3.3 DEFINITIONS 

 

Trois définitions sont nécessaires : 

 

- Le module de conservation ou module de stockage correspond à l’énergie stockée dans 

l’échantillon à cause de la contrainte appliquée, c’est la composante élastique des 

matériaux. Il est défini comme : 

 

  (3.5) 

- Le module de perte ou module de la friction interne correspond à la dissipation d’énergie, 

c’est la composante visqueuse des matériaux. Il est défini comme : 

 

  (3.6) 

 

- Le facteur de perte est défini par : 

 

  (3.7) 

 

où d est le déphasage. On trouve des relations du type : 

 

 sollicitation :  

 réponse :  (3.8) 

 

Quelques valeurs typiques pour un polymère solide : 

 

-  
-  

-  
- (polymère fondu: ) 

 

 

! E =
σ0
ε0
cos(δ)

! ! E =
σ 0

ε0
sin(δ )

tan(δ ) =
" " E 
" E 

ε = ε0 sin(ω t)

σ = ε0 # E sin(ω t) + ε0 # # E cos(ω t)

! E ≈ 109  [Pa]

! ! E ≈ 107  [Pa]

δ ≈ 0.01

δ ≈ 40° −80°



3.6 Essais harmoniques 

3.4  COMPORTEMENT DYNAMIQUE POUR LE MODELE STANDARD LINEAIRE 

 

Nous considérons deux sollicitations possibles, soit une contrainte harmonique, soit une 

déformation harmonique. 

 

3.4.1 Contrainte sinusoïdale 

 

On considère une variation sinusoïdale de la contrainte appliquée : 

 

 s   =  s0 sin(w t)    et      = w s0 cos(w t) (3.9) 

 

En utilisant l’équation générale sous forme différentielle du SLSM donnée au paragraphe 2.6.1 : 

 

  (3.10) 

 

En substituant les valeurs de s et de  dans l’équation précédente, on aboutit à : 

 

  (3.11) 

 

où ts  est le temps de retard comme défini au paragraphe 2.3.1, c’est-à-dire : 

 

  (3.12) 

 

La solution particulière est de la forme : 

 

 e  = A cos(w t) + B sin(w t) (3.13) 

 

avec comme dérivée : 

 

  = –Aw  sin(w t) + Bw  cos(w t) (3.14) 
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En remplaçant e et  par les expressions ci-dessus dans l’équation (3.11), on a : 

 

 (3.15) 

 

Par comparaison entre les termes en sinus et en cosinus, on a un système de deux équations à 

deux inconnues : 

 

  (3.16a) 

  (3.16b) 

 

En résolvant ce système, on trouve que les constantes A et B valent : 

 

     et     (3.17) 

 

Par ailleurs la déformation peut être exprimée par : 

 

 (3.18) 
 

où d  est le déphasage et le facteur de perte correspondant vaut : 

 

  (3.19) 

 

Le terme B sin(w t) représente le comportement en phase et A cos(w t) celui hors phase. Par 

conséquent, on a la complaisance de stockage : 

 

  
(3.20)
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et la complaisance de perte : 

 

  
(3.21)

 
 

On obtient ainsi l’équation particulière pour la déformation : 

 

  (3.22)
 

 
 
3.4.2 Déformation sinusoïdale 

 

La variation sinusoïdale de la déformation appliquée est : 

 

 e  =  e0 sin(w t)    et     (3.23) 

 

En remplaçant ces expressions dans l’équation générale du SLSM :  

 

  (3.24) 

 

on obtient : 

 

  (3.25) 

 

On cherche une solution de la forme : 

 

 s = e0 E ' sin(w t) + e0 E " cos(w t)   et    = e0 E ' w cos(w t) - e0 E " w sin(w t) (3.26) 

 

En remplaçant dans (3.2), et en séparant les termes en cos et en sin, on a : 

 

      et     (3.27) 
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En résolvant pour E ' et E ", on aboutit aux modules en phase et hors phase suivants : 

 

  (3.28) 

  (3.29) 

 

 

Ces deux fonctions sont schématiquement représentées à la Figure 3.6. On voit que E'' passe 

par un maximum pour une vitesse angulaire qui correspond à l’inverse du temps de relaxation 

du matériau. On obtient aussi le facteur de perte : 

 

  (3.30) 

 

 
Figure 3.6. Modules de stockage E’ et de perte E’’ pour le modèle SLSM en fonction de la fréquence. 
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3.10 Essais harmoniques 

3.5 ENERGIE DISSIPEE PAR CYCLE ET PAR UNITE DE VOLUME 

 
Par définition, l’énergie dissipée est la surface représentée à la Figure 3.7, elle est en fait décrite 

par une hystérèse. 

 

 
Figure 3.7. Représentation graphique de l’énergie dissipée sur un cycle. 

 

L’énergie dissipée sur un cycle est : 

 

  (3.31) 

On a les relations suivantes pour une sollicitation en déformation : 

 

 sollicitation :     Þ     (3.32) 

 réponse :  (3.33) 

 

On peut maintenant calculer l’énergie dissipée sur un cycle : 

 

  (3.34) 

 Þ     (3.35) 

 

De manière analogue, on trouve le résultat pour une sollicitation en contrainte : 

 

  (3.36) 

 
On constate que seules les composantes hors phase d’un matériau viscoélastique affectent 

l’énergie dissipée. L’unité de cette énergie est le [J/m3]. 
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3.6 REPRESENTATION COMPLEXE 

 

Comme on a des modules en phase et hors phase, on peut utiliser la théorie des nombres 

complexes. Pour cela, il faut exprimer la sollicitation et la réponse en nombres complexes. Pour 

une sollicitation en déformation, cela donne : 

 

 sollicitation : e = e0 exp(iw t) 

 réponse : s = s0 exp[i(w t + d )] (3.37) 

 

A partir de là, on peut définir deux modules apparents, le module complexe E* et la compliance 

complexe J* : 

     (3.38) 

     (3.39) 

 
Ici, le déphasage d  est défini comme étant : 

 

  (3.40) 

 

La Figure 3.8 représente ces deux modules apparents dans le plan complexe. 

 

             
Figure 3.8. Représentation graphique dans l’espace complexe des différents modules et du déphasage. 
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Entre ces deux modules complexes (E* et J*), on a la relation : 

 

 J* (iw) = 1/(E*(iw)) (3.41) 

 

Attention, les définitions des modules complexes sont différentes si une sollicitation en 

contrainte est imposée : 

 

 sollicitation : s  = s0 exp{iw t} 

 réponse : e  = e0 exp{i(w t – d)} (3.42) 

 

En effet, on a maintenant : 

 

 E* = E’ - iE” (3.43) 

 J* = J’ + iJ” (3.44) 
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3.7. RESUME DES FORMULES IMPORTANTES 

 

3.7.1 Contrainte sinusoïdale 

 

Facteur de perte :   (3.45) 

Complaisance de stockage :   (3.46) 

Complaisance de perte :   (3.47) 

 

3.7.2 Déformation sinusoïdale 

 

Facteur de perte :   (3.48) 

Module de stockage :   (3.49) 

Module de perte :   (3.50) 

 

3.7.3 Energie dissipée par cycle et par unité de volume 

 

Sollicitation en déformation   (3.51) 

Sollicitation en contrainte   (3.52) 
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4 MODELES DE RELAXATION ET BASES PHYSIQUES 
 

La représentation intégrale pour un matériau viscoélastique linéaire à l’aide de la superposition 

de Boltzmann est, pour le fluage : 

 

  (4.1) 

 
sachant que : 

 

  (4.2) 

 
on a donc : 

 

  (4.3) 

 
De même pour la relaxation : 

 

  (4.4) 

 

Les fonctions au cœur de l’intégrale ('kernel functions'), JV(t) et RV(t) sont des fonctions de 

mémoire reliant l’évolution des contraintes et des déformations. Différentes expressions, 

représentant des phénomènes physiques distincts, sont couramment utilisées. 

 

Les modèles de relaxation sont obtenus par un essai de relaxation comme décrit au paragraphe 

1.4.2, dans lequel une déformation constante e0 est subitement appliquée à t = 0. On a défini 

alors la fonction de relaxation RV(t), aussi appelée module relaxant : 

 

  (4.5) 
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4.2 Modèle de relaxation et bases physiques 

4.1 MODELE DE MAXWELL 

 

Prenons l’exemple du modèle mécanique simple de Maxwell (décrit à la Figure 2.8) dans les 

conditions de relaxation, c’est à dire pour . La condition pour un modèle linéaire (modèle 

de Maxwell) est : 
 

     
où    te est le temps de relaxation (4.6) 

 

Le module relaxant évolue dans le temps comme l’illustre la Figure 4.1. 

 

 
Figure 4.1. Evolution du module relaxant d’après le modèle linéaire. 

 

Comme au Chapitre 2, on trouve la solution suivante : 

 

  (4.7) 

  (4.8) 

 

- Caractéristiques : temps de relaxation unique, décroissance exponentielle, relaxation de 

s  en trois décades. 

- Validité : surestime la relaxation. 

- Paramètre : te déplace la courbe par rapport à l’axe du temps. 
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4.3 MODELE DE MAXWELL GENERALISE 

 

Ce modèle permet de décrire le comportement d’un matériau ayant une multitude de temps de 

relaxation discrets. Le modèle est représenté à la Figure 4.2. 

 

 
Figure 4.2. Représentation schématique du modèle de Maxwell généralisé. 

 

Le modèle est décrit par une série de Prony : 

 

 (4.9) 

 

Cette représentation peut être utilisée pour n’importe quelle courbe de relaxation et converge 

rapidement avec un terme par décade de temps. Les coefficients Ci peuvent être vus comme les 

composantes d’un spectre discret de relaxation. Ce modèle est pratique pour décrire des courbes 

de relaxation où les données sont limitées dans le temps. 

 

- Caractéristiques : série de Prony, spectre discret de te  , un élément par décade. 

- Validité : c’est un modèle empirique (régression). 

 

On a représenté le module relaxant à la Figure 4.3. 
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4.4 Modèle de relaxation et bases physiques 

 
Figure 4.3. Construction graphique de l’évolution du module relaxant d’après le modèle de Maxwell généralisé. 
On additionne les différents modules relaxants correspondant aux différents temps de relaxation (il y a un temps 
de relaxation par éléments). 
 

4.3 MODELE DE KELVIN (VOIGT) GENERALISE 

 

Ce modèle est construit sur la même base que le modèle de Maxwell généralisé. Il s’agit du 

modèle de Kelvin mis en série, puis on rajoute un ressort en série. On trouve alors une fonction 

de complaisance qui est : 

 

  (4.10) 

 

4.4 MODELE COOPERATIF KWW (EXPONENTIEL ALLONGE) 

 

Le modèle proposé initialement par Kohlrausch en 1854 et repris plus tard par Williams et Watt 

en 1970 représente la relaxation des contraintes dues au mouvement coopératif (interdépendant, 

coordonné) d’unités primitives ayant chacune un temps caractéristique de relaxation donné par 

le modèle linéaire. Ce modèle est décrit par une relation exponentielle incluant un exposant b : 

 

  (4.11) 
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On obtient le module relaxant, représenté à la Figure 4.4 : 

 

  (4.12) 

 

 
Figure 4.4. Evolution du module relaxant d’après le modèle KWW. 

 

Il y a deux cas limites. Le premier où b vaut 1 correspond alors au modèle linéaire de Maxwell. 

Le deuxième où b vaut 0 correspond au modèle élastique. 

 

- Caractéristiques : exposant d'étirement b, relaxation coopérative d'un grand nombre de 

processus. 

- Validité : bon pour des temps moyens, peu précis pour des temps courts, et surestime 

aux temps longs. 

- Paramètres : te déplace la courbe par rapport à l’axe du temps, b modifie la forme la 

courbe en changeant sa pente. 

 

4.5 SPECTRE DE TEMPS DE RELAXATION (STR) 

 

Les modèles présentés précédemment ne décrivent pas très bien le comportement de la structure 

d’un polymère. La difficulté vient de l’utilisation de plusieurs modèles possédant plusieurs 

temps de relaxation. Cependant, on a divers modèles à disposition, comme celui de Maxwell 

généralisé (paragraphe 4.2) qui possède plusieurs temps de relaxation (un pour chaque 

élément). On définit le spectre de temps de relaxation comme représentant la distribution des 

temps de relaxation, caractérisée par une densité de probabilités. 
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4.6 Modèle de relaxation et bases physiques 

Appliquée au modèle de Maxwell généralisé, on a une fonction de relaxation : 

 

  (4.13) 

 

Un exemple de spectre de relaxation avec les valeurs des modules est reporté à la Figure 4.5. 

 

 
Figure 4.5. Exemple de spectre discret de temps de relaxation en fonction du module. 

 

On note que pour un grand nombre d'éléments (si n ® infini) on obtient un spectre continu 

dénommé H(te) et décrit à la Figure 4.6. 

 

 

Figure 4.6. Exemple de spectre continu de temps de relaxation H(te) en fonction du module. 

 

On peut écrire la fonction de relaxation et de complaisance au fluage (obtenues en utilisant un 

modèle de Kelvin généralisé) en différenciant la partie élastique à la partie visqueuse : 

 

 
relaxation :

 
 (4.14)

 

 
fluage :  (4.15)
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H(te) est défini comme étant le spectre de relaxation et L(ts) comme le spectre de retard. H(te ) 

et L(ts) reflètent les mécanismes physiques et chimiques du comportement rhéologique. Les 

composantes aux temps courts indiquent des phénomènes localisés, tandis que les temps de 

relaxation longs indiquent des mécanismes impliquant des domaines plus étendus. 

 

4.6 CALCUL DU SPECTRE DE TEMPS DE RELAXATION 

 

Il existe des méthodes permettant d’avoir accès aux spectres de temps de relaxation.  

 
Approximation d’Alfred  
 

(différentiation de                                                             ) 

 

 
 (4.16)

 
 

Approximation de Ferry & Williams 
 

 
 (4.17)

 
 

où , avec  qui est une fonction tabulée et m est la pente . 

 

Approximation de Schwarzl & Staverman 
 

 (4.18)
 

 

L’approximation d’Alfred donne généralement une bonne valeur de référence. 
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4.8 Modèle de relaxation et bases physiques 

4.7 MODELES PHYSIQUES THERMIQUEMENT ACTIVES 

 

4.7.1 Modèle exponentiel 

 

Ce modèle représente le passage d’un état 1 à un état 2 de plus basse énergie avec une énergie 

d’activation Ea = -n*s où v* représente un volume d’activation, et s est la contrainte. Pour les 

polymères, on a : 

 

  (4.19) 

 

avec k la constante de Boltzmann et T la température absolue (en Kelvin). L'énergie plus basse 

correspond à une contrainte plus faible. Pour ce modèle, on pose : 

 

 
 (4.20)

 
 

où A est une constante. 

 

On a un module relaxant qui est : 

 

  (4.21) 

 

Le module relaxant a été reporté sur la Figure 4.7 et une représentation du mécanisme sur la 

Figure 4.8. 

 
Figure 4.7. Evolution du module relaxant d’après le modèle exponentiel. 
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Figure 4.8. Représentation du mécanisme physique. 

 

4.7.2 Modèle exponentiel avec ‘réaction’ dans les deux sens 

 

On considère le même passage d’énergie que dans le cas du modèle exponentiel. Cependant, la 

probabilité de la ‘réaction’ 2 ® 1 est aussi prise en compte. Ce phénomène est décrit à la Figure 

4.9. 

 

 
Figure 4.9. Représentation du mécanisme physique en considérant la “réaction” dans les deux sens. 

 

La solution, légèrement différente, est donnée par : 

 

  (4.22) 

 

Car sinh x = (ex – e–x)/2. On voit que la contrainte est de la forme : 

 

  (4.23) 
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Le module relaxant a été reporté sur la figure 4.7 et une représentation du mécanisme sur la 
figure 4.8. 
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Figure 4.7 Evolution du module relaxant d’après le modèle 

exponentiel. 
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Figure 4.8 Représentation du mécanisme physique. 
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4.10 Modèle de relaxation et bases physiques 

La nature des composantes aux temps courts ou longs dont il est question, sont schématisés à 

la figure 4.10. 

 

 
Figure 4.10. Mouvements des chaînes de polymère en rapport avec le temps nécessaire pour les effectuer. 
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5 EQUIVALENCE TEMPS - TEMPERATURE 
 

5.1 COURBE MAITRESSE ET COEFFICIENT DE TRANSLATION aT 

 

On a constaté qu’il existe une équivalence entre la durée d’une sollicitation et la température 

d’un matériau. Par exemple, le comportement d’un polymère à température élevée pour des 

sollicitations rapides correspond au comportement du même matériau à basse température pour 

des grands temps de sollicitation. Ainsi, la Figure 5.1 montre que la relaxation d’un polymère 

viscoélastique à une température donnée peut être superposée à la réponse obtenue à une autre 

température moyennant un décalage selon l’axe des temps. 

 

 
Figure 5.1. Allure des modules de relaxation en fonction du temps pour différentes températures (T1>T2>T3). 

 

La distance de décalage est une fonction de la température décrite par un coefficient de 

translation (shift factor) aT. On peut dès lors construire une courbe maîtresse ou courbe pilote 

comme montré à la Figure 5.2.  

                
Figure 5.2. Illustration du principe de superposition temps-température. Construction de la courbe maîtresse (en 
gras) au moyen de mesures effectuées à différentes températures (traits minces). 
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5.2 Equivalence temps - température (t-T) 

 

On utilise le facteur de translation pour passer du comportement à un temps donné et une 

température de référence, à celui à un autre temps pour une autre température, par la formule 

suivante : 

 

  (5.1) 

 

Pratiquement, on obtient les relations suivantes : 

 

 (5.2) 

 

Le facteur de translation est donc le temps requis pour obtenir une certaine réponse du matériau 

à une température T2, divisé par le temps requis pour obtenir la même réponse à la température 

de référence. On a aussi : 

 

  (5.3) 

 

La variation de aT est décrite schématiquement à la Figure 5.3, en fonction de 1/T. Il faut noter 

que si la température T est plus grande que Tref, comme à la Figure 5.2, alors R(T) sera plus 

faible, donc aT sera inférieur à 1, et donc Log(aT) sera négatif.  

 

 
Figure 5.3. Variation de aT en fonction de la température. 

 

Différentes relations ont été trouvées pour exprimer la variation de aT avec la température. Les 

plus utilisées sont celle d'Arrhenius, et celle de William, Landel et Ferry. Ces équations sont 

présentées dans les paragraphes suivants.  
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5.2 RELATION D’ARRHENIUS  

 

La loi d’Arrhenius (introduite en 1889 par le chimiste Suédois du même nom) est utilisée dans 

la cadre de la rhéologie, pour des conditions éloignées de la température de transition vitreuse 

Tg. La viscosité et la viscoélasticité d’un matériau résultent de sa mobilité moléculaire et/ou de 

la mobilité de défauts internes. Il s'agit de phénomènes de transport à très petite échelle, dans 

lesquels une entité change de position dans l’espace. Ces mouvements sont gouvernés par des 

facteurs tels que la probabilité qu’une place soit disponible, l’énergie requise pour passer d’un 

état à un autre et la probabilité pour que l’événement ait lieu. Ces facteurs sont affectés par la 

température qui régit le “débit”. Le débit est la caractéristique temporelle des phénomènes. Il y 

a une équivalence entre le temps et la température dans la représentation du comportement du 

matériau : 

 

  (5.4) 

 

où k est une propriété temporelle (i.e., un taux ou cinétique de réaction) en [s-1], A un facteur 

de fréquence, R la constante de Boltzmann et T la température en [K] et Ea l’énergie 

d’activation. Ainsi, l’énergie d’activation étant généralement positive, quand T augmente, la 

propriété k augmente également et le temps correspondant diminue. La loi d’Arrhenius est 

utilisée pour décrire le comportement en température de nombreuses propriétés dont les 

suivantes. 

 

- Phénomène de transport de base : la diffusion, avec le coefficient D (en [cm2/s]) 

 

   (5.5) 

 

- Par analogie, la relaxation de contrainte peut être décrite comme une “diffusion” d’état 

de contrainte : 

 

  (5.6) 
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5.4 Equivalence temps - température (t-T) 

 

- La viscosité h est par analogie la réciproque de la fluidité : 

 

  (5.7 

 

- Le temps de relaxation t  : 

 

  (5.8) 

 

5.3 RELATION ENTRE LA TEMPERATURE ET LA MOBILITE MOLECULAIRE 

 

La viscosité h et le temps de relaxation t sont des mesures de la mobilité moléculaire. Ils 

dépendent par conséquent de la diffusion des molécules ou des groupes de molécules, et les 

mécanismes régissant h et t sont liés. Soit la viscosité dont la variation avec la température est 

caractérisée par : 

 

     Þ     (5.9) 

 

Ceci est valable pour n’importe quelle température, et on a : 

 

  (5.9) 

 

On aboutit à une relation du type Arrhenius représentée à la Figure 5.4 : 

 

 (5.10) 

 

La translation aT peut aussi s’exprimer comme un ratio entre le temps d’écoulement à une 

certaine température, par rapport au temps d’écoulement pour atteindre le même résultat à la 

température de référence : 
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     ou     (5.11) 

 

On peut donc aussi écrire que : 
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Cette relation s’applique aux métaux, céramiques, polymères, verres, … 

 

 
Figure 5.4. Représentation graphique d’une relation du type d’Arrhenius pour la viscosité. 

 

5.4 L’EQUATION WLF ET THEORIE DU VOLUME LIBRE 

 

Dans les conditions proches de la transition vitreuse Tg la loi d’Arrhenius n’est plus en mesure 

de décrire le comportement visqueux. En 1955 Williams, Landel et Ferry ont dérivé une 

équation appelée WLF reposant sur celle de Doolittle (1951), qui prend comme principe de 

base que la mobilité moléculaire est une fonction du volume libre : 

 

   (5.13) 

 

où f est la fraction de volume libre et a’ et b’ sont des constantes. Aux températures T1 et T2, 

on a la relation (trouvée empiriquement à partir de données sur la paraffine) : 

 

   (5.14) 
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5.6 Equivalence temps - température (t-T) 

 

Il faut trouver une expression pour le volume libre. La théorie du volume libre est une 

description de la structure d’un matériau amorphe comme un verre inorganique ou un polymère. 

Cette théorie est fondée sur le fait que les molécules n’occupent pas tout le volume à leur 

disposition. Le volume libre est le volume inoccupé par les molécules, c’est-à-dire “l’espace 

vide” entre celles-ci. A l’état caoutchoutique (T > Tg), ce volume est élevé. Plus la température 

baisse, plus ce volume diminue. Ceci est vrai jusqu’à ce que la température atteigne un seuil 

“critique” au-delà duquel le volume libre reste constant. Cette température correspond à Tg, 

température de transition vitreuse. La Figure 5.5 représente le volume spécifique d’un verre, 

somme du volume spécifique occupé par les molécules (droite du bas) et le volume à disposition 

(droites du haut). 

 

 
Figure 5.5. Variation du volume spécifique d’un verre (courbe supérieure) et de ses molécules (courbe inférieure) 
et définition graphique du volume libre qui est la distance entre les deux courbes. 
 

Le volume par unité de masse occupé par les molécules augmente à cause de l’expansion 

thermique due au mouvement brownien. Il faut faire attention à l’échelle verticale sur la Figure 

5.5 qui est en [m3/kg], il s’agit de volume spécifique. 

 

Le volume disponible par unité de masse est V = V0 + Vf, où V0 est le volume spécifique occupé 

par les molécules et Vf le volume spécifique libre. En utilisant les équations des droites, on 

obtient la relation : 
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Vfg est le volume libre à la température de la transition vitreuse. Pour T > Tg, la dérivée du 

volume par rapport à la température par unité de masse vaut: Da = (al - ag). al et ag sont les 

coefficients d’expansion thermique et sont représentés à la Figure 5.5. 

 

On divise la relation obtenue par le volume disponible V : 

 

  (5.16) 

 

et on pose :  

 

  (5.17) 

 

d’où 

 

     pour     T > Tg (5.18) 

 

En posant que b’ vaut 1 et Tréf vaut Tg, on trouve : 

 

     Þ       (5.19) 
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  (5.20) 

 

donc : 
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5.8 Equivalence temps - température (t-T) 

 

Les valeurs des constantes c et d sont pour Tg < T < Tg + 100 : 

 

       et       (5.22) 

 

Une meilleure approximation utilise: T 
* = Tg + 50°C, c = 8.9 et d = 102. 

 

Cette équation s’applique aux polymères, aux liquides organiques, ainsi qu'aux verres 

inorganiques. 

 

5.5 INFLUENCE DE LA PRESSION SUR LE COMPORTEMENT VISCOELASTIQUE 

 

Une augmentation de la pression réduit le volume et donc la mobilité moléculaire (Figure 5.6). 

Elle affecte le comportement viscoélastique du matériau. La dépendance est analogue à la 

relation WLF : 

 

 
Figure 5.6. Une augmentation de la pression réduit le volume et donc la mobilité moléculaire. 

 

  (5.23) 

 

où p0 représente une pression de référence et c représente la compression du volume libre : 
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La compressibilité c est dépendante de la pression et de la température. Un accroissement de la 

température augmente c, alors qu’un accroissement de pression diminue cette compressibilité. 

Avec la pression, le volume spécifique diminue, comme le montre la Figure 5.7. Nous 

reviendrons sur ce diagramme d’état au Chapitre 7 dans le cas des liquides. 

 

 
Figure 5.7. Représentation de la variation du volume spécifique en fonction de la température pour deux pressions 
données. 
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DEUXIEME PARTIE 

RHÉOLOGIE DES LIQUIDES 
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6 CLASSES DE LIQUIDES 
 

L’introduction de nouveaux concepts a permis de caractériser le comportement des solides et 

de les étudier. Pour les liquides, nous allons aussi avoir besoin de concepts permettant de les 

définir selon leurs caractéristiques. Le paramètre le plus important est la viscosité. Elle dépend 

de la structure et de la composition du matériau étudié. L’étude des liquides est importante, car 

on trouve pratiquement toutes les classes de matériaux sous forme liquide, et c’est souvent sous 

cette forme qu’on les met en œuvre. En exemple, on peut citer : 

 

- les métaux fondus, 

- les céramiques fondues ou sous forme de suspensions, 

- les polymères fondus, 

- le béton (qui n’a pas encore pris), 

- la nourriture (margarine, mayonnaise, ketchup, …), 

- beaucoup d’autres (liquides biologiques, ...). 

 

Il faut cependant se souvenir que tous les matériaux, même ceux qui sont apparemment solides, 

fluent et donc s’écoulent. Les temps d’écoulement sont certes très longs. La distinction entre 

solide et liquide faite ici est donc arbitraire. 

 

6.1 CLASSIFICATION ET MISE EN ŒUVRE DES POLYMERES 

 

Les classifications permettent en général de cerner un comportement. Il y a plusieurs critères 

de classements, comme par exemple la microstructure et la mise en œuvre. 

 

6.1.1 Structure 

 

On distingue trois types de polymères représentés à la Figure 6.1. La Figure 6.1a représente un 

polymère linéaire, la Figure 6.1b un polymère ramifié et la Figure 6.1c un polymère réticulé 

(réseau). 

 



6.2 Classe de liquides 

 
Figure 6.1. Représentation schématique des trois types de polymères : (a) linéaire, (b) ramifié et (c) réticulé. 

 

Par exemple, un ski est composé de plusieurs polymères : la semelle est en PE (polyéthylène) 

de très haute masse moléculaire, avec des chaînes linéaires composées d'environ 3 millions 

d'unités répétitives. Sa viscosité est très élevée. Le cœur du ski peut être en résine époxy (formé 

par réticulation de monomères) renforcée par des fibres de verre. 

 

6.1.2 Mise en œuvre 

 

La mise en œuvre des thermoplastiques suit un procédé classique, décrit à la Figure 6.2. 

 
Figure 6.2. Représentation schématique du procédé classique de mise en œuvre des thermoplastiques. 

 

La mise en forme se fait suivant diverses méthodes. On peut citer notamment le moulage par 

injection, ainsi que l’extrusion qui sont les moyens les plus utilisés pour les articles fabriqués 

avec des polymères thermoplastiques. L’avancée du front de solidification lors du moulage par 

injection est décrite à la Figure 6.3. 

 

 
 

Figure 6.3. Représentation schématique de l’avancée du front de solidification lors du moulage par injection. 
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6 CLASSES DE LIQUIDES 

L’introduction de nouveaux concepts a permis de caractériser le comportement des solides 
et de les étudier. Pour les liquides, nous allons aussi avoir besoin de concepts permettant de 
les définir selon leurs caractéristiques. Le paramètre le plus important est la viscosité. Elle 
dépend de la structure et de la composition du matériau étudié. L’étude des liquides est 
importante, car on trouve pratiquement toutes les classes de matériaux sous forme liquide, et 
c’est souvent sous cette forme qu’on les met en oeuvre. En exemple, on peut citer : 

- les métaux fondus, 

- les céramiques fondues ou sous forme de suspension, 

- les polymères fondus, 

- le béton (qui n’a pas encore pris), 

- la nourriture (margarine, mayonnaise, ketchup, …), 

- beaucoup d’autres (liquides biologiques, ...). 

 

Il faut cependant se souvenir que tous les matériaux, même ceux qui sont apparemment 
solides, fluent et donc s’écoulent. Les temps d’écoulement sont certes très longs. La 
distinction entre solide et liquide faite ici est donc arbitraire. 

 

6.1 CLASSIFICATION ET MISE EN ŒUVRE DES POLYMERES (APPROCHE) 

Les classifications en général permettent de cerner un comportement. Il y a plusieurs 
critères de classements. 

 

6.1.1 Structure 

On peut distinguer trois types de polymères, ils sont représentés à la figure 6.1. 

(a) (b) (c)  
Figure 6.1 Représentation schématique des trois types de 

polymères: (a) linéaire, (b) ramifié et (c) réticulé. 

6.2 Classe de liquides 

La figure 6.1 (a) représente un polymère linéaire, la figure 6.1 (b) un polymère ramifié et la 
figure 6.1 (c) un polymère réticulé (réseau). 

Par exemple, un ski est composé de plusieurs polymères : la semelle est en PE 
(polyéthylène) avec des chaînes linéaires composées  d'environ 3 millions d'unités répétitives. 
Sa viscosité est très élevée. Le cœur du ski peut être en résine époxy (formé par réticulation 
de monomères) renforcée par des fibres de verre. 

 

6.1.2 Mise en œuvre 

La mise en œuvre des thermoplastiques suit un procédé classique, décrit à la figure 6.2. 
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Figure 6.2 Représentation schématique du procédé classique de mise en œuvre 

des thermoplastiques. 

 

La mise en forme se fait suivant diverses méthodes. On peut citer notamment le moulage 
par injection, ainsi que l’extrusion qui sont les moyens les plus utilisés pour les articles 
fabriqués avec des polymères thermoplastiques. L’avancée du front de solidification lors du 
moulage par injection est décrite à la figure 6.3. 

 

Figure 6.3 Représentation schématique de l’avancée du front de solidification 
lors du moulage par injection. 

 

La figure 6.4 montre la progression du front du fluide solidifié dans le moule. La 
progression du front peut être décrite par des équations mathématiques. Pour plus 
d’informations, on peut se référer au polycopié: Hofmann H., Phénomènes de transfert, 
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La Figure 6.4 montre la progression du front du fluide solidifié dans le moule. La progression 

du front peut être décrite par des équations mathématiques. Pour plus d’informations, on peut 

se référer au polycopié Phénomènes de transfert (Hofmann, EPFL). On peut aussi consulter le 

livre suivant : Karger-Kocis, Polypropylene structure, blends and composites, Chapman and 

Hall, 1995, Cambridge, ainsi que le polycopié du cours de mise en œuvre des polymères. 

 
 

 
Figure 6.4. Représentation schématique de la progression du front du fluide solidifié dans le moule. 

 

6.2 CLASSIFICATION DES COURBES D'ECOULEMENT 

 

L’écoulement d’un matériau fondu peut être caractérisé par une courbe d’écoulement qui 

reporte la contrainte de cisaillement en fonction de la vitesse de cisaillement. Il faut considérer 

plusieurs types de fluides. 

 

6.2.1 Fluides Newtoniens 

 

Un fluide Newtonien suit un comportement simple, décrit par une loi proposée par Newton : 

 
 ! = 	$%̇ (6.1) 

 
où la viscosité h est indépendante de la vitesse de cisaillement %̇. Ce comportement est 

représenté à la Figure 6.5, avec h1 > h2 > h3. Les viscosités représentent les pentes des droites. 

 

 
Figure 6.5. Courbes d’écoulement (contrainte-taux de cisaillement) pour trois fluides newtoniens avec h1 > h2 > h3. 
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REPRO-EPFL, 1995, Lausanne. On peut aussi consulter le livre suivant: Karger-Kocis, 
Polypropylene Structure, blends and composites, Chapman and Hall, 1995, Cambridge, ainsi 
que le polycopié du cours de mise en oeuvre des polymères. 
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Figure 6.4 Représentation schématique de la progression du front du 
fluide solidifié dans le moule. 

 

6.2 CLASSIFICATION DES COURBES D'ECOULEMENT 

L’écoulement d’un matériau fondu peut être caractérisé par une courbe d’écoulement qui 
reporte la contrainte de cisaillement en fonction de la vitesse de cisaillement. Il faut 
considérer plusieurs types de fluides. 

 

6.2.1 Fluide Newtonien 

Un fluide Newtonien suit un comportement simple, décrit par une loi proposée par 

Newton: 

 τ = η ˙ γ  où la viscosité est indépendante de la vitesse de cisaillement. 

Ce comportement est représenté à la figure 6.5, avec η1 > η2 > η3. Les viscosités 
représentent les pentes des droites. 

�

�1
�2

�3

�  
Figure 6.5 Courbes d’écoulement (contrainte - taux de 

cisaillement) pour trois fluides newtoniens avec η1 > η2 
> η3. 

On peut également écrire la relation sous la forme logarithmique: 

 logτ = logη + log ˙ γ  



6.4 Classe de liquides 

On peut également écrire la relation sous la forme logarithmique : 

 

 '()	! = '()	$ + '()	%̇ (6.2) 

 

La Figure 6.6 représente cette relation. L’ordonnée à l’origine vaut logh, la pente est unitaire. 

Attention, la position des axes peut être trompeuse. La représentation de la Figure 6.6 est une 

courbe d’écoulement. 

 

 
Figure 6.6. Représentation des courbes d’écoulement de la Figure 6.5 en logarithme. 

 

L’eau et la résine époxy avant durcissement sont de parfaits exemples de liquides Newtoniens. 

 

6.2.2 Fluides non-Newtoniens 

 

On rappelle la loi introduite au Chapitre 1, valable pour un fluide non-Newtonien : 

 

 ! = 	$(%̇)%̇ (6.3) 

 

où la viscosité dépend de la vitesse de cisaillement. En dehors de cette relation générale, il 

existe diverses lois qui modélisent plus ou moins correctement le comportement des fluides 

non-Newtoniens. On utilise fréquemment la loi de puissance :  

 

 ! = 	-%.̇ (6.4) 

 '()	! = '()	- + /'()	%̇ (6.5) 

 

La viscosité est décrite par les coefficients k et n. L’unité de k dépend de la valeur de n. k est 

plus communément appelé consistance, et n indice de la loi de puissance ou de indice de 

pseudo-plasticité. D’autres modèles de lois seront exposés en détail au Chapitre 7. 

6.4 Classe de liquides 

La figure 6.6 représente cette relation. L’ordonnée à l’origine vaut logη, la pente est 
unitaire. Attention, la position des axes peut être trompeuse. La représentation de la figure 6.6 
est une courbe d’écoulement. 

log �
�1 �2 �3

log �

1

 
Figure 6.6 Représentation des courbes d’écoulement de la figure 

6.5 en logarithme. 

L’eau et la résine époxy avant durcissement sont de parfaits exemples de liquides 
Newtoniens. 

 

6.2.2 Fluide non-Newtonien 

On rappelle la loi introduite au chapitre 1, valable pour un fluide non-Newtonien : 

 

 

€ 

τ = η(˙ γ ) ˙ γ  où la viscosité dépend de la vitesse de cisaillement 

 

En dehors de cette relation générale, il existe diverses lois qui modélisent plus ou moins 
correctement le comportement des fluides non-Newtoniens. On utilise fréquemment la              
loi de puissance :  

 

 τ = κ ˙ γ n  

 

D’autres modèles de lois seront exposés en détail au chapitre 7.  

La viscosité est décrite par les coefficients κ et n. L’unité de κ dépend de la valeur de n (cf 
index). κ est plus communément appelé consistance, et n l’indice de la loi de puissance.  

Le comportement  général d’un liquide est décrit à la figure 6.7. 

 logτ = logκ + n log ˙ γ  
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Le comportement général d’un liquide est décrit à la Figure 6.7.  

 

 
Figure 6.7. Courbes contrainte - taux de cisaillement pour (a) un fluide newtonien, (b) dilatant et 
(c) pseudoplastique. 
 

La courbe (a) représente un fluide Newtonien (n = 1), la courbe (b) décrit un fluide dilatant 

(n > 1) et la courbe (c) montre un fluide pseudoplastique (n < 1). Les ordonnées à l’origine des 

courbes log-log de la Figure 6.7 ont la valeur de logk. Il est à noter que le terme rhéofluidifiant 

est synonyme du terme pseudoplastique, et le terme rhéoépaississant, synonyme du terme 

dilatant. 

 

La plupart des thermoplastiques sont pseudoplastiques tandis que les suspensions de particules 

à l’origine des céramiques peuvent être dilatantes. 

 

6.3 LA VISCOSITE 

 

La viscosité dynamique (ou tout simplement viscosité) est le rapport d’une contrainte et d’une 

vitesse de déformation : 

 

 $ = 0
1̇    ou    $ = 2

3̇  (6.6) 

 

En prenant l’exemple de la loi de puissance, on aboutit à une relation permettant de relier la 

viscosité à la vitesse de cisaillement : 

 

 $ = 0
1̇ =

41̇5
1̇ = -%̇.67 (6.7) 

 

Lorsque n vaut 1, le fluide est Newtonien et on peut remplacer k par h. Cette relation est 

représentée par la Figure 6.8, qui décrit des courbes de viscosités. 
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Figure 6.7 Courbes contrainte - taux de cisaillement pour (a) un 
fluide newtonien, (b) dilatant et (c) pseudoplastique. 

 

La courbe (a) représente un fluide Newtonien (n = 1), la courbe (b) décrit un fluide dilatant    
(n > 1) et (c) montre un fluide pseudoplastique (n < 1). Les ordonnées à l’origine des courbes 
log-log de la figure 6.7 ont la valeur de logκ. Il est à noter que le terme rhéofluidifiant est 
synonyme du terme pseudoplastique, et le terme rhéoépaississant, synonyme du terme 
dilatant. 

 

La plupart des thermoplastiques sont pseudoplastiques tandis que les suspensions de 
particules à l’origine des céramiques peuvent être dilatantes. 

 

6.3 LA VISCOSITE 

La viscosité dynamique (ou tout simplement viscosité) est le rapport d’une contrainte et 
d’une vitesse de déformation: 

 η =
τ
˙ γ 

 ou η =
σ
˙ ε 

 

En prenant l’exemple de la loi de puissance, on aboutit à une relation permettant de relier 
la viscosité à la vitesse de cisaillement: 

 

€ 

η =
τ
˙ γ 

=
κ ˙ γ 

n

˙ γ 
=κ ˙ γ 

n−1
 

Lorsque n vaut 1, le fluide est Newtonien et on peut remplacer κ par η. 

 

Cette relation est représentée par la figure 6.8, qui décrit des courbes de viscosités. 

 

 

 



6.6 Classe de liquides 

 
Figure 6.8. Courbes de viscosité pour (a) un fluide newtonien, (b) dilatant et (c) pseudoplastique. 

 

Les droites a, b et c de la Figure 6.8 décrivent les mêmes matériaux, dans le même ordre qu’à 

la Figure 6.7. 

 

6.4 COURBE DE VISCOSITE DES POLYMERES : CAS GENERAL 

 

Dans les polymères, une contrainte impose une orientation préférentielle des chaînes, favorisée 

par la présence d'enchevêtrements. L'état d'orientation dépend de la vitesse à laquelle les 

molécules peuvent s’enchevêtrer. 

 

Le temps d’enchevêtrement est long Þ La structure reste orientée plus longtemps. 

Le temps d’enchevêtrement est court Þ La structure retrouve rapidement un équilibre. 

 

En observant la courbe de viscosité d'un polymère chargé, on peut distinguer tous les types de 

comportement en fonction de la vitesse de cisaillement. Une telle courbe est dessinée à la Figure 

6.9. 

 

 
Figure 6.9. (a) Courbe de viscosité typique comportant tous les types de comportement : (1) et (3) plateau 
Newtonien, (2) pseudo plastique. (b) courbes de viscosité pour deux polymères (PE et PC) qui possèdent 
uniquement les deux premiers comportements (Newtonien et pseudoplastique). 
 
 

6.6 Classe de liquides 
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Figure 6.8 Courbes de viscosité pour (a) un fluide newtonien, (b) 

dilatant et (c) pseudoplastique. 

   

Les droites a, b et c de la figure 6.8 décrivent les mêmes matériaux, dans le même ordre 
qu’à la figure 6.7. 

 

6.4 COURBE DE VISCOSITE DES POLYMERES : CAS GENERAL 

 

Dans les polymères, une contrainte impose une orientation préférentielle des chaînes, 
favorisée par la présence d'enchevêtrements. L'état d'orientation dépend de la vitesse à 
laquelle les molécules peuvent s’enchevêtrer. 

 

Le temps d’enchevêtrement est long ⇒ La structure reste orientée plus longtemps. 

Le temps d’enchevêtrement est court ⇒ La structure retrouve rapidement un 

équilibre. 

 

En observant la courbe de viscosité d'un polymère chargé, on peut distinguer tous les types 
de comportement en fonction de la vitesse de cisaillement. Une telle courbe est dessinée à la 
figure 6.9. 
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(a) (b)  
Figure 6.9 (a) Courbe de viscosité typique comportant tous les types 

de comportement: (1) et (3) plateau Newtonien, (2) pseudo 
plastique. (b) courbes de viscosité pour deux polymères (PE 
et PC) qui possèdent uniquement les deux premiers 
comportements (Newtonien et pseudoplastique). 

 

Les chiffres sur la figure 6.9 (a) correspondent à un comportement: 

1) newtonien: la vitesse de déformation est assez lente pour que les molécules puissent 

trouver une position d'équilibre (région newtonienne basse), 

2) pseudoplastique: la vitesse de sollicitation est plus grande ou égale à la vitesse de 

relaxation, 

3) newtonien: la vitesse de sollicitation est beaucoup plus grande que la vitesse de 

relaxation, il s’ensuit une orientation des molécules parallèlement à la direction de 

cisaillement(région newtonienne haute). 

 

La variation de la viscosité η en fonction de la vitesse de cisaillement dépend de la 
structure chimique, en particulier de: 

- la flexibilité des chaînes, 

- la ramification des chaînes, 

- du poids moléculaire (MW), 

- de la distribution de MW. 

 

Chaque technique de mise en œuvre peut se caractériser par une gamme de vitesses de 
cisaillement qui lui est propre. Cette gamme est approximativement représentée à la figure 
6.10. 
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Les chiffres sur la Figure 6.9a correspondent à un comportement : 

 

1) newtonien : la vitesse de déformation est assez lente pour que les molécules puissent 

trouver une position d'équilibre (région newtonienne basse), 

2) pseudoplastique : la vitesse de sollicitation est plus grande ou égale à la vitesse de 

relaxation, 

3) newtonien : la vitesse de sollicitation est beaucoup plus grande que la vitesse de 

relaxation, il s’ensuit une orientation des molécules parallèlement à la direction de 

cisaillement (région newtonienne haute). 

 
La variation de la viscosité h en fonction de la vitesse de cisaillement dépend de la structure 

chimique, en particulier de : 

 
- la flexibilité des chaînes, 

- la ramification des chaînes, 

- du poids moléculaire (MW), 

- de la distribution de MW. 

 
Chaque technique de mise en œuvre peut se caractériser par une gamme de vitesses de 

cisaillement qui lui est propre. Cette gamme est approximativement représentée à la Figure 

6.10. 

 

 
Figure 6.10. Courbe de viscosité typique où l’on a reporté la gamme de taux de cisaillement pour quatre procédés 
de mise en œuvre. 
 

  

6.8 Classe de liquides 
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Figure 6.10 Courbe de viscosité typique où l’on a reporté la gamme 
de taux de cisaillement pour quatre procédés de mise en 
œuvre. 
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7 RELATIONS CONSTITUTIVES  
 

Ce chapitre décrit les différentes méthodes permettant de modéliser les comportements des 

fluides non-newtoniens, sur la base de lois qui s’en rapprochent le plus. 

 

7.1 EXEMPLES DE RELATIONS 

 

Il existe de nombreuses expressions pour prédire le comportement rhéologique des fluides. Les 

lois les plus utilisées sont présentées dans ce chapitre.  

 

Le comportement de la viscosité en fonction de la vitesse de cisaillement est souvent décrit à 

l’aide des trois paramètres suivants : 

 

- h0 = k : viscosité à cisaillement faible, où le fluide se comporte comme un fluide 

newtonien. 

- h¥ : viscosité à cisaillement infini, c’est-à-dire lorsque . 

- lc : temps de relaxation. 

 

Ces trois valeurs sont représentées sur la Figure 7.1. 

 

 
Figure 7.1. Représentation, sur une courbe de viscosité, de la viscosité à cisaillement nul, à cisaillement infini et 
du temps de relaxation. 

€ 

˙ γ → ∞
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7 RELATIONS CONSTITUTIVES  

Ce chapitre décrit les différentes méthodes permettant de modéliser les comportements 
des fluides non-newtoniens, sur la base de lois qui s’en rapprochent le plus. 

 

7.1 EXEMPLES DE RELATIONS 

Il existe de nombreuses expressions pour prédire le comportement rhéologique des 
fluides. Les lois les plus utilisées sont présentées dans ce chapitre.  

Le comportement de la viscosité en fonction de la vitesse de cisaillement est souvent 
comme représenté figure 7.1, avec les trois paramètres suivants : 

- η0 = κ: viscosité à cisaillement faible, où le fluide se comporte comme un fluide 
newtonien. 

- η

€ 

∞ : viscosité à cisaillement infini, c’est-à-dire lorsque 

€ 

˙ γ → ∞. 

- λc : temps de relaxation. 

 

Ces trois valeurs sont représentées sur la figure 7.1 

 

 

 

 

 

 

 

 

 

 
Figure 7.1 : représentation, sur une courbe de viscosité, de la 

viscosité à cisaillement nul, à cisaillement infini 

et du temps de relaxation. 

 



7.2 Relations constitutives 

7.1.1 Loi de puissance 

 

Cette loi qui a déjà été exposée dans le Chapitre 6, permet de décrire le comportement d’un 

matériau dont la contrainte et la viscosité suivent les lois : 

 

  (7.1) 

 

Notons que l’on trouve parfois cette loi sous la forme : 

 

 (7.2) 

 

où  est une vitesse de cisaillement de référence, par exemple 1 s-1. Cette loi se trouve aussi 

sous forme logarithmique : 

 

   (7.3) 

 

Elle est décrite à la Figure 7.2. 

 

 
Figure 7.2. Courbe de viscosité : comparaison entre le comportement réel et la loi de puissance. 

 

Les désavantages de la loi de puissance sont : 

 

- L'unité de k dépend de la valeur de n 

- Elle ne décrit pas un polymère réel avec les régions newtoniennes hautes et basses. 

 

 

 

τ = κ ˙ γ n

η = κ ˙ γ n−1

€ 

˙ γ 0

logη = logκ + (n −1)log ˙ γ 

log η

log γ

comportement réel
loi de puissance

   
η = κ

γ
γ 0

$

%&
'

()

n−1
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7.1.2 Modèle de CARREAU 

 

Ce modèle permet d’affiner la loi de puissance, il est caractérisé par l’équation : 

 

 (7.4) 

 

Cette équation est représentée à la Figure 7.3. 

 

 
Figure 7.3. Courbe de viscosité : comparaison entre le comportement réel et le modèle de Carreau. 

 

Le modèle de Carreau est une équation à 4 paramètres :  où  est un temps de 

relaxation,  est la viscosité à un cisaillement nul,  est la viscosité à un cisaillement infini 

et n est l’indice de pseudoplasticité. 

 

- Si  , alors  

- Si  , alors  

 

Ce modèle ne décrit pas toujours bien la transition entre les plateaux newtoniens et la partie 

pseudoplastique ou rhéofluidifiante. 

  

η −η∞
η0 −η∞

= 1 + λc ˙ γ ( )2[ ]
n−1( )

2

log η

log γ

comportement réel
modèle

η0

η∞

λc,η0,η∞ ,n λ c

η0 η∞

    λ c
˙ γ ( )2

<< 1 η→ η0

    λ c
˙ γ ( )2

>> 1 η→ η∞



7.4 Relations constitutives 

7.1.3 Modèle de CARREAU-YASHUDA 

 

Ce modèle est une amélioration du modèle de Carreau. Son expression est la suivante : 

 

  (7.4) 

 

Par rapport au modèle de Carreau, on a l’introduction d’un cinquième paramètre (k). 

Graphiquement, le coefficient k permet une transition plus progressive entre les plateaux 

newtoniens et la région pseudoplastique ou rhéofluidifiante. Ce modèle se rapproche 

parfaitement du comportement réel du fluide comme le montre la Figure 7.4. 

 

Le modèle de Carreau est un cas particulier du modèle de Carreau-Yashuda où k vaut 2. 

 

 
Figure 7.4. Courbe de viscosité : comparaison entre le comportement réel et le modèle de Carreau-Yashuda. 

 

7.1.4 Autres modèles 

 

Le modèle de Cross est défini par la relation : 

 

  (7.5) 

 

Le modèle de Cross est une équation à quatre paramètres : h0, h∞, K, n où le coefficient K est 

une variable de temps caractéristique et n est une constante de pente. 

 

 

η− η∞
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k

log η

log γ
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η∞

η −η∞
η0 −η∞

=
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Le modèle de Ellis est décrit par l’expression : 

 

  (7.6) 

 
avec t : cission et t1/2 : cission pour une viscosité h = h0/2. Cette relation est schématisée à la 
Figure 7.5. 
 

 
Figure 7.5. Courbe de viscosité : comparaison entre le comportement réel et le modèle de Ellis. 

 

Le modèle de Ellis est une équation à trois paramètres, h0, K, a où K est une constante de temps 

caractéristique et a est une constante de pente. Ce modèle est bien adapté pour des basses 

vitesses de cisaillement, car il ne prévoit pas le second plateau newtonien. 

 

7.2 VISCOSITE EN FONCTION DE DIFFERENTS PARAMETRES 

 

La viscosité dépend de plusieurs facteurs, tels que la vitesse de cisaillement, le temps de 

cisaillement, le poids moléculaire, la présence de particules solides, la température et la 

pression. 

 

7.2.1 Vitesse de cisaillement : h = h ( ) 

 

La dépendance de la viscosité à la vitesse de cisaillement a été étudiée aux paragraphes 6.3 et 

7.1. Le comportement d’un fluide peut être classifié selon trois catégories : 

 

- Comportement newtonien 

h ne dépend pas de . Il concerne les matériaux qui ont un temps de retour à une 

position d'équilibre très court ou qui subissent une vitesse de cisaillement très faible 

ou très élevée. 

η
η0

= 1+ K !γ( )( )2 a−1( ) ou η
η0

= 1

1+ τ τ1 2( )a−1

log η

log γ

comportement réel
modèle

  ̇  γ 

  ̇  γ 



7.6 Relations constitutives 

- Comportements non newtonien 

- dilatant ou rhéo-épaississant : h augmente quand  augmente. Cela concerne 

les matériaux qui contiennent certains types de renforts. Ce comportement est 

dû au frottement interne entre les particules. 

- pseudoplastique ou rhéo-fluidifiant : h diminue quand  augmente. Cela 

concerne les matériaux contenant de longues chaînes qui s'orientent 

conformément au champ de cisaillement. Ce comportement est caractéristique 

de la plupart des polymères et des polymères renforcés. 

 

Ces trois comportements sont schématisés à la Figure 7.6. 

 

 
Figure 7.6. Courbes de viscosité avec les trois comportements : (a) newtonien, (b) dilatant et (c) pseudoplastique. 

 

7.2.2 Temps de cisaillement : h = h(t) 
 

Pour des liquides non-newtoniens, la viscosité peut dépendre de la durée pendant laquelle le 

cisaillement est appliqué de façon irréversible ou non : 

 

- Irréversible : dû à des changements permanents dans la microstructure. 

- Réversible : 

 Thixotropie : destruction de la structure plus rapide que sa reconstitution. 

 Rhéopéxie : destruction de la structure plus lente que sa reconstitution. 

 

Ces comportements se traduisent par des hystérèses sur un diagramme contrainte de 

cisaillement - vitesse de cisaillement (Figure 7.7a), ou sur un diagramme viscosité - temps 

(Figure 7.7b). 

 

Il ne faut pas conclure de la Figure 7.7 que thixotropie va nécessairement avec rhéofluidifiant 

et rhéopéxie avec rhéoépaississant.  

  ̇  γ 

  ̇  γ 

log η

log γ

(a)

(b)

(c)
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Deux exemples de comportement typiquement thixotropique sont la peinture et le yoghourt. 

 

 
Figure 7.7. Représentation des comportement newtonien, thixotrope et rhéopexique sur des graphes contrainte - 
taux de cisaillement (a) et viscosité en fonction du temps, le taux de cisaillement étant constant (b). Il est à noter 
que les trois types de comportement sont réversibles (ce que l’on a essayé de montrer en (b)). 
 

7.2.3 Poids moléculaire : h = h(M
W
) 

 

Il existe un poids moléculaire critique, MW = MC à partir duquel les effets d'enchevêtrement se 

font sentir. Pour le polystyrène (PS), MC  38'000 g/mol et pour le polyéthylène à faible densité 

(LDPE), MC  4'000 g/mol. Pour la plupart des plastiques techniques, on a MW >> MC. Ce poids 

critique est représenté à la Figure 7.8a. La dépendance de la viscosité par rapport au poids 

moléculaire est schématisé à la Figure 7.8b. 

 

 
Figure 7.8. Effet du poids moléculaire sur la viscosité (a) sur un graphique viscosité - poids moléculaire pour deux 
taux de cisaillement et (b) sur une courbe de viscosité avec trois poids moléculaires différents. 
 

Les deux courbes présentées montrent la dépendance de h à la masse moléculaire. La courbe 

décrite à la Figure 7.8a est caractérisée par les équations : 

 

- h0 = K1 MW    si    MW < MC (7.7) 

- h0 = K2 MW3.4    si    MW > MC (7.8) 
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7.8 Relations constitutives 

Si on augmente la vitesse de cisaillement, la création de nouveaux enchevêtrements ne peut se 

faire aussi vite que les désenchevêtrements, donc il n’y a plus compensation. 

 

A de faibles poids moléculaires, on a peu d'enchevêtrements, donc il faut des vitesses de 

cisaillement plus élevées pour obtenir une orientation suffisante des chaînes du polymère. La 

partie newtonienne est plus étendue pour de faibles MW. 

 

7.2.4 Ajout de particules : h = h(f) 

 

De nombreux fluides sont chargés de particules (on parle alors de suspensions) qui peuvent 

influencer de façon considérable leur viscosité. Dans les polymères on ajoute souvent de la 

craie, du sable, des particules de TiO2, du noir de carbone, etc., mais également des fibres de 

verre, de carbone, d’aramide (KEVLAR), de lin, etc. La taille des particules peut varier de 

quelques nanomètres jusqu’à plusieurs centaines de micromètres. Le diamètre des fibres varie 

typiquement entre 5 et 25 µm et leurs longueurs entre 0.2 et 50 mm.  

 

Les phénomènes en jeu sont traités en détail aux Chapitres 10 et 11.  

 

7.2.5 Température et pression : h = h(T ; P) 

 

Loi d’Arrhenius h = h(T) 
 

Comme décrit précédemment au Chapitre 5, la dépendance de la viscosité à la température 

s’exprime par une relation d'Arrhenius lorsque la vitesse de cisaillement tend vers 0 : 
 

 (7.9) 

 

A est un facteur de fréquence qui dépend du polymère et de sa masse moléculaire Mw, Ea est 

l’énergie d'activation pour l'écoulement visqueux et R est la constante des gaz parfaits. Notons 

que la température s’exprime en Kelvin. 

 

Cette équation peut se mettre sous forme logarithmique : 

η0 T( ) = Ae
Ea
RT
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  (7.10) 

 

Cette relation est représentée à la Figure 7.9. 

 

 
Figure 7.9. Représentation graphique de la loi d’Arrhenius. Le logarithme népérien de la viscosité est rapporté à 
l’inverse de la température absolue. 
 

L’énergie d’activation augmente avec : 

 

- la taille des groupes latéraux, 

- la rigidité de la chaîne principale. 

 

Elle diminue avec : 

 

- l’augmentation de la vitesse de cisaillement  à cause de l’orientation des molécules 

imposées par le cisaillement. 

 

Le Tableau 7.1 présente quatre polymères en montrant leur structure et la valeur de l’énergie 

d’activation pour l’écoulement visqueux. 

 

La viscosité dépend par ailleurs de la contrainte de cisaillement ou de la vitesse de cisaillement. 

Ceci donne : 

 

- pour une contrainte de cisaillement t constante :  (7.11) 

- pour une vitesse de cisaillement !̇ constante :  (7.12) 
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7.10 Relations constitutives 

Tableau 7.1 Valeurs de l’énergie d’activation et structure de quatre polymères. 
 

polymère Structure énergie d'activation Ea 

HDPE 

 

28 kJ/mol 

LDPE 

 

49 kJ/mol 

PP 

 

40 kJ/mol 

PS 

 

108 kJ/mol 

 

L’indice de l’énergie d’activation indique quel cas est étudié, c’est-à-dire quel terme est 

constant. La variation de la vitesse de cisaillement par rapport à la température pour des 

contraintes appliquées constantes est représentée à la Figure 7.10. 

 

 
Figure 7.10. Représentation de la variation de la vitesse de cisaillement par rapport à la température pour des 
contraintes appliquées constantes. 
 

A noter que la dépendance de la viscosité avec la température change quand on s’approche de 

la transition vitreuse Tg du matériau. Il est alors préférable de suivre des lois de type WLF, 

comme montré au paragraphe 7.3. 

 

Pression : h = h(P) 

 

La variation due à la pression est exprimée par la relation : 

 

  (7.13) 

 

1/T

log γ

σ1
σ2
σ3

σ1 σ2 σ3> >

η0 P( ) = aexp χP{ }
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où a et c sont des constantes, cette dernière étant appelée la compressibilité. L’expression est 

décrite à la Figure 7.11.  

 

 
Figure 7.11. Courbe de viscosité : dépendance de la viscosité à la pression. 

 

En combinant la dépendance de la viscosité à la température et à la pression, on obtient : 

 

 (7.14) 

 

où D est une constante. 

 

7.3 CONCEPT DU VOLUME LIBRE APPLIQUE AUX LIQUIDES 

 

7.3.1 Phénoménologie 

 

On peut appliquer le concept du volume libre (voir paragraphe 5.4) pour trouver une 

dépendance de la viscosité à la pression et à la température.  Dans les conditions proches de la 

température Tg, la viscosité augmente et la loi d’Arrhenius ne s’applique plus correctement car 

d’autres énergies entrent en jeu. Considérons la Figure 7.12 déjà vue au Chapitre 5. Le volume 

V (ou volume spécifique comme sur la figure) à une pression P est donné par la somme du 

volume occupé V0 et du volume libre Vf en fonction du coefficient d’expansion thermique et la 

compressibilité du matériau liquide (al et c l sur la figure) et du solide vitreux (‘glass’, ag et 

cg) : 

 

  (7.15) 

 

 

log γ

log η
p1

p2p3

p1 p2 p3> >

η0 T ;P( ) = Dexp Ea

RT
+ χP⎧

⎨
⎩

⎫
⎬
⎭

V =V0 +Vf =V0 +Vfg +Vg α l −α g( ) TgP −Tg0( )− p χ l − χg( )⎡⎣ ⎤⎦



7.12 Relations constitutives 

En divisant par le volume total V, la fraction de volume libre f est : 

 

  (7.16) 

 

Sous une pression P on a  Þ f = fg, on aboutit à la relation : 

 

  (7.17) 

 

On constate qu'avec la pression, la température de la transition vitreuse et la viscosité 

augmentent, comme décrit à la Figure 7.12. 

 

 
Figure 7.12. Représentation de la variation du volume spécifique en fonction de la température pour deux pressions 
données. 
 

7.3.2 Volume libre pour h(T) et équation WLF 

 

L’équation de Doolittle (voir paragraphe 5.4) est : 

 

  (7.18) 

 

où a' et b' sont des constantes, et f la fraction de volume libre. D’où l’équation WLF : 

f = fg + Δα Tg
P −Tg

0( )− P Δχ( )

T = Tg
p

Tg
P = Tg

0 + Δχ
Δα

P

η = a 'exp b '/ f{ }



 Rhéologie 7.13 

 

 

 

  (7.19) 

 

Où T* = Tg. Si on considère des valeurs typiques pour fg de 2.5% et pour Da de  

4.5 10-4 alors on a : 

 

  (7.20) 

 

Une meilleure approximation utilise la transformation T* = Tg + 50°C, avec C1 = 8.9 et 

C2 = 102°C : 

 

  (7.21) 

 

La variation de la viscosité en fonction de la différence de température (T - T*) est représentée 

à la Figure 7.13 et comparée avec les différents modèles. 

 

 
 
Figure 7.13. Représentation de la variation de la viscosité en fonction de la température et comparaison du 
comportement réel avec la loi d’Arrhenius et l’équation WLF. 
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7.14 Relations constitutives 

7.4  RESUME DES PRINCIPAUX MODELES 

 

7.4.1 Loi de puissance 

 

     et      (7.22) 

 

7.4.2 Modèle de Carreau 
 

 (7.23) 

 

7.4.3 Modèle de Carreau-Yashuda 
 

  (7.24) 

 

7.4.4 Modèle de Cross 
 

  (7.25) 

 

7.4.5 Modèle de Ellis  

 

  (7.26) 

 

7.4.6 Température : h = h(T) 

 

    Þ     (7.27) 
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7.4.7 Pression : h = h(P) 

 

       (7.28) 

 

où a est une constante et c est la compressibilité. En combinant la dépendance de la viscosité à 

la température et à la pression, on obtient : 

 

     où    D est une constante  (7.29) 

 

7.4.8 Equation WLF 

 

      (7.30) 

 

avec C1 = 17.4, C2 = 51.6°C et T 
* = Tg.  

 

En faisant les changements : T 
* = Tg + 50°C, C1 = 8.9 et C2 = 102°C, on obtient : 

 

  (7.31) 
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8 ECOULEMENTS VISCOSIMETRIQUES 
 

8.1 INTRODUCTION 

 

8.1.1 Ecoulements viscosimétriques types 

 

L'écoulement viscosimétrique est dans la plupart des cas non-uniforme, mais il peut être 

considéré comme cisaillement simple à l'échelle d'un élément simple du liquide. Il permet 

d'obtenir les trois fonctions viscosimétriques h, y1 et y2 introduites au Chapitre 1. 

 

Nous considérons les deux écoulements viscosimétriques suivants, avec leurs particularités : 

 

- l’écoulement de Poiseuille (provoqué par une chute de pression DP) : 

1) plan (entre deux plaques parallèles immobiles), 

2) dans un tube ; 

 

- l’écoulement de cisaillement simple (dans ce cas il n’y a pas de chute de pression) : 

1) plan (entre deux plaques parallèle en translation), 

2) entre deux cylindres concentriques en rotation (appelé Couette), 

3) entre deux disques parallèles en rotation, 

4) entre un disque et un cône en rotation. 

 

Remarquons que ces deux cas de base peuvent être combinés. Le paragraphe 8.2 se restreint au 

cas d’étude des fluides newtoniens uniquement, alors que dans le paragraphe 8.3 seront traités 

les écoulements des fluides non-newtoniens. 

 

8.1.2 Equations de conservation (fluides newtoniens) 

 

Pour comprendre l’écoulement des liquides newtoniens, nous allons utiliser l’équation de 

conservation de la masse et les équations de Navier-Stokes et, qui proviennent de la mécanique 

des fluides (se référer au polycopié « milieux continus »).  

 

 



8.2 Ecoulements viscosimétriques 

Conservation de la masse  
 

Lorsque le milieu est incompressible, l’équation de conservation de la masse prend la forme 

vectorielle réduite suivante : 

 

  (8.1) 

 

avec  opérateur divergence et  vecteur vitesse. 

 

A noter que l’équation (8.1) est valable pour les écoulements incompressibles stationnaires et 

non stationnaires (si la vitesse dépend du temps). 

 

 

Conservation de la quantité de mouvement  
 

La deuxième équation, l’équation de Navier-Stokes (conservation de la quantité de 

mouvement), sous forme non-conservative en représentation Eulérienne est : 

 

  (8.2) 

 

avec  :vecteur vitesse,  : masse spécifique, : ensemble des forces volumiques (externes), 

P : pression et  : Laplacien. 

 

 

Conservation de l'énergie 
 
On se place ici en conditions isothermes (température constante) et la conservation de l'énergie 

est alors implicite.  
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8.2 ECOULEMENTS VISCOSIMETRIQUES NEWTONIENS 

 

8.2.1  Ecoulement de Poiseuille dans une conduite rectangulaire  

 

Une chute de pression provoque l’écoulement du fluide dans la direction Ox comme schématisé 

à la Figure 8.1. La vitesse de l’écoulement n’a pas de composante verticale. On considère par 

ailleurs le cas 2D (la largeur de la conduite B est infinie) 

 

 
Figure 8.1. Profil de l’écoulement entre 2 plaques parallèles immobiles, avec h << B. 

 

En considérant les hypothèses suivantes, on va démontrer la forme parabolique du profil de 

vitesses : 

 

- Fluide newtonien, incompressible,  (a) 

- Ecoulement laminaire,  (b) 

- Vitesse nulle à la paroi, (c) 

- Ecoulement stationnaire, (d) 

- Pas de forces externes, (e) 

- Pression constante dans la section, (f) 

- Cas bidimensionnel. (g) 

 

Les hypothèses (a) et (b) permettent l’utilisation des équations (8.1) et (8.2) et la (c) fournit les 

conditions aux limites lors de l’intégration. Toutes les autres hypothèses engendrent de 

nombreuses simplifications dans les équations (8.1) et (8.2). 

 

On écrit l’équation de conservation de la masse : 

 

8.2 Ecoulement viscosimétrique: définitions, cas, exemples 

B 

y 

x 0 

h 

La deuxième équation, l’équation de Navier-Stokes, sous forme non-conservative en 
représentation Eulérienne est : 

 

       (8.2) 

 

avec : 

    

€ 

 u  :vecteur vitesse 
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f  : ensemble des forces volumiques (externes) 

 P : pression 

 

€ 

Δ  : Laplacien  

 

8.2.1  Ecoulement dans un conduit rectangulaire en 2D 

8.2.1.1 De type Poiseuille 

 

 
 

 

 

 

 

 

 

 

 
Figure 8.1. Profil de l’écoulement entre 2 plaques parallèles immobiles, avec h << B. 

 

Une chute de pression provoque l’écoulement du fluide dans la direction Ox. La vitesse de 

l’écoulement n’a pas de composante verticale.  

 

En considérant les hypothèses suivantes, on va démontrer la forme parabolique du profil de 

vitesses. 

ρ ∂!u
∂t

+ ρ !u ⋅ grad( ) !u −ηΔ !u = ρ
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f − grad P



8.4 Ecoulements viscosimétriques 

(g) 
                 (8.3) 

 

et l’équation de Navier-Stokes (8.4) : 

 

Projection sur x :   

Projection sur y :  

Projection sur z :  

 

L’hypothèse (d) annule les termes contenant une dérivée par rapport au temps, la (e) néglige le 

terme (forces extérieures), la (g) permet de supprimer tous les termes partiellement dérivés 

par rapport à z, la (b) annule les termes d’inertie, c’est à dire = 0, finalement, la (f) 

permet de poser                         et                . Notez bien que                    si l’écoulement est 

dans la direction de l’axe des x, car la pression est plus élevée à l’entrée du tube qu’à la sortie. 

 

En appliquant toutes ces simplifications, on obtient alors (projection sur x) : 

 

  (8.5) 

 

Les deux autres équations issues des projections sur y et z se réduisant à 0 = 0. En intégrant 

entre 0 et h, on obtient : 

 

     où    C1 et C2 sont des constantes (8.6) 

 

En utilisant les conditions aux limites (hyp. (c)), on détermine les constantes comme suit : 
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      (8.7) 

 

On trouve bien un profil d’écoulement parabolique, du type ay2 + by. 

 

8.2.2  Ecoulement en cisaillement simple entre plaques parallèles 

 
La Figure 8.2 présente la géométrie d’un écoulement en cisaillement simple entre deux plaques 

parallèles dont l’une est en translation parallèlement à l’autre. 

 

 
 
Figure 8.2. Ecoulement de cisaillement entre deux plaques parallèles, l’une des deux plaques ayant une vitesse U0. 
 

Pour déterminer le profil de vitesses au sein du fluide on procède de la même manière qu’au 

paragraphe précédent, en partant des équations (8.1) et (8.2), mais cette fois-ci, l’écoulement 

est généré par le mouvement de la plaque supérieure se déplaçant à la vitesse U0, et non plus 

par une différence de pression. Les mêmes hypothèses de départ sont utilisées. On a alors 

 dans l’équation (8.5). Les conditions aux limites sont donc : 

 
     et     (8.8) 

 
On a alors : 

 

   (8.9) 

 
que l’on intègre entre 0 et h : 

 
     où    C1, C2 sont des constantes d’intégration, avec : 
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  (8.10) 

 
Finalement :  

 

  (8.11) 

 
Le profil des vitesses est linéaire ! 

 

8.2.3 Ecoulement de Poiseuille dans une conduite circulaire 

 
Comme montré à la Figure 8.3 le fluide s’écoule dans la direction x du cylindre sans turbulence. 

 

 
Figure 8.3. Ecoulement dans un cylindre, L >> R. 

Il y a une diminution de pression lorsque le fluide le traverse comme le montre la Figure 8.4. 

 

 
Figure 8.4. (a) Représentation schématique d’un écoulement dans un cylindre et (b) profil de pression le long du 
tube. 
 

En coordonnées cylindriques l’équation de conservation de la masse s’écrit : 

 

  

 

et l’équation de Navier-Stokes devient : 
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Projection sur r :   

  

Projection sur q :    

  

Projection sur x :   

  (8.12) 

 

Pour simplifier ces équations, on peut poser les mêmes hypothèses qu’au paragraphe 8.2.1, 

mais appliquées à la symétrie cylindrique. C’est à dire : 

 

- Fluide newtonien, incompressible,  (a) 

- Ecoulement laminaire,  (b) 

- Vitesse nulle à la paroi, (c) 

- Ecoulement stationnaire, (d) 

- Pas de forces externes, (e) 

- Pression constante dans la section, (f) 

 

Les hypothèses (a), (b), (c), (d), (e) permettent les mêmes simplifications qu’au paragraphe 

8.2.1 : les détails ne sont donc pas fournis ici. L’hypothèse  (f) indique que . De 

plus l’écoulement est simple dans la direction x, donc . 

 

Finalement, on obtient : 

 

  (8.13) 
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Après intégration, on a : 

 

  (8.14) 

 

A nouveau, on obtient un profil parabolique. Les résultats obtenus pourront être appliqués aux 

divers écoulements utilisés dans les rhéomètres.  

 

8.2.4 Variables d’écoulement d’un fluide newtonien 

 
Cas de la conduite circulaire 

 

- Débit Q 

 

Le débit Q vaut par définition : 
 

     Þ     (8.15)
 

 
en reprenant l’expression de la vitesse trouvée au paragraphe 8.2.3, soit (8.14) : 
 

  (8.16) 
 
on a : 
 

      (8.17) 

 
donc : 
 

   (8.18) 
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- Vitesse de cisaillement  

 
Par définition, on a : 

 

  (8.19) 

 

On peut retrouver la même expression par un simple calcul d’équilibre des forces. A la Figure 

8.4, en égalisant les forces à la distance r du centre du petit élément de volume, on trouve : 

 
 tr ·2p r.dx = p r2.dP (8.20) 

 

où le terme de gauche correspond aux forces de cisaillement et celui de droite aux forces de 

pression. D’où : 

 

  (8.21) 

 

Le fluide étant newtonien, on a . En utilisant judicieusement les équations (8.18) et (8.19) 

on écrit : 

 

  (8.22) 

 
et aussi : 

 

          (8.23) 

 

où l’indice A signifie « apparent » ; c’est la valeur qui ressort lors des mesures (par rhéomètre, 

par exemple) et l’indice w signifie « à la paroi » ; c’est la valeur réelle, en un point particulier 

sur la paroi. 

€ 

˙ γ 

!γ =
dux r( )
dr

et τ =η !γ =η
dux r( )
dr

= − dP
dx
R2

4
− 2r
R2

⎛
⎝⎜

⎞
⎠⎟
= dP
dx
r
2

τ = r
2
dP
dx

€ 

˙ γ =
τ

η

!γ w = − 4Q
πR3

⎛
⎝⎜

⎞
⎠⎟
= !γ A

€ 

ηA =
τ ω
˙ γ A

=
−
R
2
dp
dx

4Q
π R 3

€ 

⇒

€ 

ηA =

−dp
dx

$ 
% 
& 

' 
( 
)  πR 4

8Q



8.10 Ecoulements viscosimétriques 

Notons que pour rester rigoureux, la vitesse de cisaillement devrait être négative. Cependant, 

par tradition, et pour simplifier, c’est souvent une valeur positive que l’on donne, en considérant 

seulement la valeur absolue de cette vitesse. 

 

Dans un fluide newtonien, les valeurs de la vitesse de cisaillement apparente sont égales aux 

valeurs de la vitesse de cisaillement à la paroi. Ce n’est pas le cas pour les fluides non-

newtoniens. 

 

A partir de l’équation (8.5), on obtient une autre expression de la vitesse : 

 

  (8.24) 

 

Cas de la conduite rectangulaire 
 

La conduite et l’écoulement sont définis à la Figure 8.5. Il est à noter que par rapport au 

paragraphe 8.2.1, le repère ne possède plus la même origine ! 

 

 
Figure 8.5. Représentation schématique de l’écoulement dans une conduite rectangulaire. 

 

Dans ce cas-là, on trouve la vitesse de l’écoulement en repartant de l’équation (8.5) du 

paragraphe 8.2.1 : 

 

     où    C1 et C2 sont des constantes (8.25) 
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  (8.25a) 

  (8.25b) 

 

La différence de ces 2 équations donne C1 = 0 et leur somme donne . 

Finalement on trouve : 

  (8.26) 

- Débit 

 
Le débit est donné par l’expression : 

  (8.27) 

d’où 
 

                 (8.28) 

 

8.3 FLUIDES NON NEWTONIENS 
 

L’équation de Navier-Stokes n’est plus utilisable dans le cas des fluides non-newtoniens, car 

l’hypothèse du fluide newtonien (viscosité indépendante de la vitesse de cisaillement) n’est plus 

vérifiée. On pourrait encore résoudre les équations de base de l’écoulement en introduisant une 

loi adéquate, comme la loi de puissance, mais on doit vite recourir à des méthodes numériques. 

On utilise alors une approche différente, soit l’équilibre des forces.  

 

8.3.1 Ecoulement de Poiseuille dans une conduite circulaire  
 

De l’équilibre des forces sur un élément de volume dans une conduite circulaire (Figure 8.4, 

paragraphe 8.2.3), on avait trouvé la relation (8.21), indépendante de la viscosité et donc aussi 

applicable à un fluide non-newtonien, soit : 
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  (8.29) 

La vitesse u se détermine de la manière suivante (voir les paragraphes 1.4.1 et 1.4.2) : 

 

     
u(R) = 0    

 (8.30) 

 

Alors en caractérisant le comportement du fluide non-newtonien par sa loi de puissance : 

 

     Þ     (8.31) 
 

On remplace t  par sa valeur dans l’équation bilan : 

 

  (8.32) 

 

Le calcul donne : 

  (8.33) 

 

8.3.2 Ecoulement de Poiseuille dans une conduite rectangulaire 

 

En appliquant l’équilibre des forces sur un élément de volume rectangulaire de la Figure 8.5, 

on aboutit au résultat (de la même manière qu’au paragraphe 8.2.4 pour le tube cylindrique) : 

 

  (8.34) 
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8.3.3 Variables d’écoulement d’un fluide non-newtonien 

 
Cas de la conduite circulaire 
 

- Débit Q 

 
A partir de la vitesse d’écoulement trouvée au paragraphe 8.3.2 (équation 8.7), il est possible 

de calculer le débit du fluide Q comme définit précédemment par l’équation 8.15. On aboutit 

au résultat suivant : 

 

 
 (8.35) 

 

- Vitesse de cisaillement  

 
La vitesse de cisaillement à la paroi est déterminable et vaut : 

 

  (8.36) 

 
On définit la vitesse de cisaillement apparente      comme valant : 

 

  (8.37) 

 

Dans un fluide non newtonien, les valeurs de la vitesse de cisaillement apparente ne sont pas 

égales aux valeurs de la vitesse de cisaillement à la paroi. Pour obtenir , il faut corriger les 

valeurs de      en utilisant la relation (8.37). 

 

On obtient finalement la viscosité apparente ha : 

 

  (8.38) 
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Cas de la conduite rectangulaire 
 

- Débit Q 

 

En reprenant la valeur de la vitesse de l’écoulement dans ce cas (§ 8.3.1), on trouve comme 

expression pour le débit : 

 

  (8.39) 

 

8.3.4  Profils de vitesse d’écoulement 

 

Le gradient de vitesse d’écoulement, i.e. la fonction de distribution de vitesse dans le fluide, 

dépend du fluide qui s’écoule. Les profils de vitesse de fluides décrits par la loi puissance sont 

dessinés à la Figure 8.6. On remarque que le profil de vitesse d’un fluide dilatant est différent 

de celui d’un fluide newtonien, car le gradient dépend de la valeur de l’indice n de la loi de 

puissance. On rappelle qu’un fluide dilatant prend des valeurs de n supérieures à 1, et qu’un 

fluide pseudo plastique des valeurs inférieures à 1. 

 

 
Figure 8.6. Profils de vitesse d’écoulement en fonction de la valeur de l’indice n de la loi de puissance. 
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8.4 ANALYSE DIMENSIONNELLE 

 

« Ne jamais faire de calculs avant d'en connaître le résultat. » (J.A. Wheeler) 

 

8.4.1 Principe fondamental 
 

L’analyse dimensionnelle est une méthode bien connue pour réduire le nombre et la complexité 

de variables expérimentales influençant un phénomène physique donné. Cette approche 

remonte aux travaux d’Euler sur les unités et les dimensions en physique dans la deuxième 

moitié du 18ème siècle. Elle repose sur le principe fondamental selon lequel toute relation entre 

des grandeurs physiques est dimensionnellement homogène.  

 

Si un phénomène dépend de n variables dimensionnelles, l’analyse dimensionnelle permet de 

réduire le problème à seulement k variables sans dimension. La différence n – k est en générale 

égale au nombre de dimensions fondamentales qui gouvernent le problème étudié. Les quatre 

dimensions fondamentales utilisées dans le cadre de la mécanique des fluides sont la masse M, 

la longueur L, le temps T et la température Q, ce qu’on désigne par le système {MLTQ } (ou 

{FLTQ }, la force F remplaçant la masse M). 

 

La résolution des équations de conservation (voir le paragraphe 8.1.2) peut s’avérer trop 

difficile dans le cas de géométries et de conditions d’écoulement complexes, et il faut alors 

recourir à des expériences. Toutefois ces dernières peuvent rapidement devenir fastidieuses et 

extrêmement coûteuses … L’analyse dimensionnelle offre une alternative très efficace à ces 

problèmes. Cette méthode est par exemple à l’origine du développement de maquettes, par 

exemple testées en bassin de carène ou en soufflerie, ce qui revient considérablement moins 

cher que de tester des prototypes de taille réelle, à l’échelle 1. 

 

Supposons qu’on s’intéresse à la force (de traînée) d’un objet dans un fluide, comme une 

automobile dans l’air. On considère que cette force F dépend de la taille de l’objet L, de sa 

vitesse V, de la densité du fluide r et de sa viscosité h, ce qui fait cinq variables au total : 

 

 F = f (L, V, r, h) (8.40) 

 



8.16 Ecoulements viscosimétriques 

Trouver la fonction f expérimentalement consisterait à faire varier chacun des 4 paramètres en 

gardant les autres constants. En choisissant 10 valeurs pour chacun des paramètres, on arrive 

au nombre énorme de 104 = 10'000 expériences ! L’analyse dimensionnelle arrive à la 

rescousse, en réduisant l’équation (8.40) à une forme équivalente, fonction de deux variables 

seulement et non plus de cinq comme nous le verrons dans la suite, nécessitant par conséquent 

10 expériences et non plus 10'000.  

 

8.4.2 Théorème de Vaschy-Buckingham pi 

 

En 1914 Buckingham propose la méthode d’analyse dimensionnelle, déjà formalisée par 

Vaschy en 1892 et utilisée de nos jours sous l’appellation du théorème de Vaschy-Buckingham-

pi. Le terme pi correspond à la notation mathématique du produit de variables P. Le théorème 

s’exprime comme suit : 

 

Soit une loi physique entre n variables avec j dimensions indépendantes, alors on peut 

exprimer cette loi sous la forme d’une relation entre k = n − j nombres sans dimension :  

 

 a1  = f(a2, a3 … an) = 0    Þ    P1 = g(P2, P3 … Pk) = 0  (8.41) 

 

Le théorème permet de trouver des nombres adimensionnels sous la forme de produits 

dénommés P1, P2 … Pk. L’application de ce théorème se fait en cinq étapes : 

 

1. Etablir la liste des n variables du problème. L’oubli d’une variable importante 

conduira à l’échec de l’analyse. 

2. Etablir la liste des dimensions de chacune des variables selon le système {MLTQ } 

(ou {FLTQ }) et établir le nombre de dimensions du problème, à savoir la valeur de 

j. Voir le Tableau 8.1 avec les dimensions de propriétés pertinentes pour des 

problèmes de mécanique des fluides.  

3. Sélectionner j variables ne formant pas un ‘groupe P’, i.e., des produits de variables 

possédant au moins une dimension différente. En général on choisit la taille, la 

vitesse, la densité, et ajouter une variable aux j variables sélectionnées, par exemple 

la variable dépendante de l’équation qu’on cherche à analyser (F dans l’équation 

8.40). 
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4. Former le produit de puissances des variables puis trouver les valeurs des exposants 

rendant le produit adimensionnel, et réitérer j-1 fois les étapes 3 et 4 avec l’ajout 

d’autres variables. 

5. Ecrire la fonction de variables adimensionnelles et vérifier que chaque groupe P est 

bien adimensionnel. 

 
Tableau 8.1. Dimensions de propriétés pertinentes pour des problèmes de mécanique des fluides [F. White, Fluid 
Mechanics]. 

 
 

8.4.3 Analyse dimensionnelle de la force de traînée 

 

Prenons l’exemple donné par l’équation (8.40). Il y a n = 5 variables. Les dimensions de 

chacune de ces variables sont : 

 

- F : {MLT 
-2} 

- L : {L}  

- V : {LT 
-1}  

- r : {ML-3} 

- h : {ML-1T 
-1} 

contains !1 and only "2 contains !5. It is a very neat system once you get used to the
procedure. We shall illustrate it with several examples.

Typically, six steps are involved:

1. List and count the n variables involved in the problem. If any important vari-
ables are missing, dimensional analysis will fail.

2. List the dimensions of each variable according to {MLT#} or {FLT#}. A list is
given in Table 5.1.

3. Find j. Initially guess j equal to the number of different dimensions present, and
look for j variables which do not form a pi product. If no luck, reduce j by 1
and look again. With practice, you will find j rapidly.

4. Select j scaling parameters which do not form a pi product. Make sure they
please you and have some generality if possible, because they will then appear
in every one of your pi groups. Pick density or velocity or length. Do not pick
surface tension, e.g., or you will form six different independent Weber-number
parameters and thoroughly annoy your colleagues.

5. Add one additional variable to your j repeating variables, and form a power
product. Algebraically find the exponents which make the product dimension-
less. Try to arrange for your output or dependent variables (force, pressure drop,
torque, power) to appear in the numerator, and your plots will look better. Do

5.3 The Pi Theorem 287

Table 5.1 Dimensions of Fluid-
Mechanics Properties Dimensions

Quantity Symbol MLT# FLT#

Length L L L
Area A L2 L2

Volume ! L3 L3

Velocity V LT$1 LT$1

Acceleration dV/dt LT$2 LT$2

Speed of sound a LT$1 LT$1

Volume flow Q L3T$1 L3T$1

Mass flow ṁ MT$1 FTL$1

Pressure, stress p, % ML$1T$2 FL$2

Strain rate &̇ T$1 T$1

Angle ' None None
Angular velocity ( T$1 T$1

Viscosity ) ML$1T$1 FTL$2

Kinematic viscosity * L2T$1 L2T$1

Surface tension + MT$2 FL$1

Force F MLT$2 F
Moment, torque M ML2T$2 FL
Power P ML2T–3 FLT$1

Work, energy W, E ML2T$2 FL
Density , ML–3 FT2L–4

Temperature T # #
Specific heat cp, c! L2T$2#$1 L2T$2#$1

Specific weight - ML–2T$2 FL$3

Thermal conductivity k MLT –3#$1 FT$1#$1

Expansion coefficient . #$1 #$1



8.18 Ecoulements viscosimétriques 

Seules j = 3 dimensions sont présentes. Ainsi, on s’attend à ce que k = 5 – 3 = 2, c’est à dire 

qu’on cherche deux P, soit P1 et  P2. Il faut alors sélectionner j variables ne formant pas un 

‘groupe P’. En inspectant la liste on constate que L, V et r ne peuvent pas former un groupe P 

parce que seul r contient la dimension M et que seul V contient la dimension T.  

 

Pour trouver les deux P, on sélectionne ces trois variables L, V et r, que l’on combine avec une 

quatrième, soit F, soit h. Pour P1 on choisit la variable dépendante qui est la force F, et on 

écrit : 

 

 P1 = LaVbrcFd = (L)a(LT 
-1)b(ML-3)c(MLT 

-2)d = M 
0L0T 

0 (8.42) 

 

où le terme M 
0L0T 

0 traduit la condition d’adimensionnalité des P. La force F étant la variable 

dépendante on pose d = 1, et il reste trois équations pour trois inconnues a, b et c, que l’on 

résout pour chaque dimension : 

 

- Longueur L : a + b – 3c + 1 = 0 

- Masse M :  c + 1 = 0 

- Temps T :  – b – 2 = 0 

 

On trouve a = – 2, b = – 2 et c = – 1, et donc : 

 

  (8.43) 

 

CF est le coefficient de force adimensionnel. 

 

Pour trouver P2 on ajoute la viscosité h aux trois variables L, V et r : 

 

 P2 = LaVbrchd = (L)a(LT 
-1)b(ML-3)c(ML-1T 

-1)d = M 
0L0T 

0 (8.44) 

 

On peut prendre n’importe quelle valeur pour l’exposant d mais la valeur 1 conduit à un résultat 

bien connu. On a : 

 

Π1 = L
−2V −2ρ −1F = F

ρV 2L2
= CF
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- Longueur L :  a + b – 3c – 1 = 0 

- Masse M :  c + 1 = 0 

- Temps T :  – b – 1 = 0 

 

On trouve a = b = c = –1, et donc : 

 

  (8.45) 

 

qui est en effet l’inverse du nombre de Reynolds.  

 

On a en définitive la relation entre deux variables, équivalente à la relation (8.40) qui elle était 

entre cinq variables : 

 

 CF = g(Re-1) (8.46) 

 

La fonction g est différente de la fonction f mais elle contient la même information : rien n’est 

perdu dans l’analyse dimensionnelle.  

 

Cette relation correspond en fait à la loi de Stokes : 

 

  (8.47) 

 

L’analyse dimensionnelle ne permet pas à elle seule de trouver le terme 6p. Il reste toujours 

une constante sans dimension dont on ne connait pas la valeur numérique et un calcul plus 

complet est nécessaire. 

 

 

   

 

Π2 = L
−1V −1ρ −1η1 = η

ρVL
= Re−1

CF =
6π
Re

soit F = 6πηVL
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9 MESURES RHEOMETRIQUES 
 

Les rhéomètres permettent de mesurer la viscosité et les propriétés viscoélastiques comme les 

modules élastique et de perte en cisaillement par exemple d’un polymère. Il en existe diverses 

sortes, chacun possédant des avantages et des inconvénients. 

 

9.1 RHEOMETRE CAPILLAIRE 

 

Le rhéomètre capillaire utilise un écoulement, forcé par un piston, traversant une filière 

cylindrique de très petit diamètre. On contrôle en règle générale la vitesse du piston, et dans 

certains cas on contrôle plutôt la force. Force ou pression et vitesse du piston sont mesurables. 

L’appareil est schématisé à la Figure 9.1. 

 

 
 

Figure 9.1. Schéma d’un rhéomètre capillaire avec R << Rb. 

 

9.1.1 Détermination de la viscosité 
 

La pression Pd exercée sur le fluide par le piston est : 
 

  (9.1) 
 

La contrainte à la paroi s’obtient par l’équilibre des forces et vaut : 

 

  (9.2) 

L

2R

Rb

Fd

∆p

Pd =
Fd
πRb

2

τ w =
R
2
⋅ ΔP
L

= Pd
2 L / R( )
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Pour un fluide newtonien, la vitesse de cisaillement se détermine par : 
 

 
 (9.3) 

 
d’où la viscosité, obtenue en mesurant le débit Q sous une pression Pd (on retrouve bien 

l’équation 8.23) : 

 

  (9.4) 
 
En fait l’équation (9.2) pose un problème de convergence, ce que résout la correction de 

Bagley. 

 

9.1.2 Correction de Bagley 

 

Lors d’un écoulement dans un tube où il y a changement brusque de diamètre (Figure 9.2a), la 

pression totale générée par la géométrie est la somme de la pression créée par le capillaire lui-

même et de la pression créée par la zone convergente précédant le capillaire : 

 

  (9.5) 
 

La correction de Bagley consiste à calculer une longueur de capillaire fictive à ajouter à celle 

du capillaire réel et qui donnera une perte de pression égale à la pression de convergence. On 

introduit un terme fictif qui va corriger la contrainte de cisaillement à la paroi. Le terme fictif 

correspond soit à une longueur, soit à une pression. 

 

 
Figure 9.2. Correction de Bagley. (a) schéma d’un tube où il y a un changement brusque de diamètre.  
(b) graphique du rapport des longueurs du capillaire en fonction de la perte de pression. 

!γ w = !γ A =
4Q
πR3

η = τ w
!γ w

= ΔP
2 L / R( ) ⋅

πR3

4Q
= πR4

8L
⋅ Pd
Q

P = Pd + ΔPconvergence

(a)

L

2R

∆p

L
R

e

(b)
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Il suffit alors de construire le diagramme différence de pression-longueur relative à partir de 

résultats expérimentaux, comme à la Figure 9.2b. La valeur de e est la distance entre le point 

d’intersection de la droite expérimentale et l’origine. On obtient la contrainte de cisaillement à 

la paroi par la relation : 

 

 
    

où     représente le facteur de correction (9.6) 

 

Par conséquent la viscosité devient : 

 

  (9.7) 

 

9.1.3 Correction de Rabinowitsch 

 

Pour un fluide non-newtonien la relation contrainte à la paroi-taux de cisaillement n’est plus 

linéaire car la viscosité dépend du taux de cisaillement et une correction s’avère nécessaire. 

Rabinowitsch a développé une approche en 1929 pour traiter le cas de fluides décrits par la loi 

puissance et obtenir la viscosité, comme décrit dans le paragraphe suivant. 

 

Lors de mesures capillaires, on détermine la viscosité du fluide en mesurant la différence de 

pression pour trouver directement le débit qui, dans le cas d’un fluide newtonien est donné 

par : 

 

  (9.8) 

 

On détermine ensuite par les équations de la mécanique des fluides le taux de cisaillement 

apparent et la contrainte de cisaillement à la paroi : 

 

  (9.9) 

€ 

τ w =
Δp

2(L R + e )

€ 

e

η = τ w
!γ w

= πR4

8L
L

L + R ⋅ e
⎛
⎝⎜

⎞
⎠⎟
⋅ Pd
Q

= L
L + R ⋅ e

⎛
⎝⎜

⎞
⎠⎟
⋅ηnon corrigé

€ 

Q =
π R 4

8η
ΔP
L

!γ A =
4Q
πR3

et τ w =
R
2
⋅ ΔP
L
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Pour un fluide newtonien, la viscosité est alors déterminée par la relation linéaire : 

 
  (9.10) 

 
Pour les fluides non-newtoniens, le problème est plus compliqué, car la relation contrainte à la 

paroi-taux de cisaillement n’est plus linéaire (la viscosité dépend du taux de cisaillement). 

Pour pallier ce problème, on utilise la procédure de Rabinowitsch, qui permet de corriger le 

taux de cisaillement apparent. La correction se fait en traçant une droite avec quelques valeurs 

de la contrainte à la paroi et du cisaillement apparent comme effectué à la Figure 9.3. 

 

 
Figure 9.3. Représentation, en logarithme, du taux de cisaillement en fonction de la contrainte à la paroi. 

 

La pente logarithmique de cette droite fournit un coefficient b de la relation empirique : 

 

    (9.11) 
 
En intégrant par parties l'équation de débit 8.35 et en posant dr = (R/tw)dt (à la paroi), puis en 

dérivant l'expression obtenue pour le débit selon tw, on trouve l’équation de Rabinowitsch : 

 

    (9.12) 
 
La loi de la puissance donne : 

 

  (9.13) 
 
La viscosité réelle est : 

 

    (9.14) 

τ =η !γ w où !γ w = !γ A

log τw

log γA

b

b ≡
d Log !γ A
d Logτ w

=
d Ln !γ A
d Lnτ w

!γ w = !γ A
3+ b
4

⎛
⎝⎜

⎞
⎠⎟

b = 1
n

⇒ !γ w = !γ A
3n+1
4n

⎛
⎝⎜

⎞
⎠⎟

η =
τ w
˙ γ w
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 Les différentes étapes du calcul de la viscosité sont résumées à la Figure 9.3. 

 

 
Figure 9.4. Calcul de la viscosité dans le cas de fluides newtonien et non-newtonien. 

 

 

9.1.4 Avantages et inconvénients du rhéomètre capillaire 

 

- Avantages : conditions représentatives des conditions réelles de procédés de mise en 

œuvre, mesure des viscosités en cisaillement et élongationnelle. 

- Désavantages : formation de ‘vortex’ de fluide au niveau de la contraction de diamètre 

(voir Figure 9.4a et Chapitre 15) et nécessité d’établir des corrections, éventuels 

problèmes de glissement du fluide sur la paroi du capillaire, et consommation de 

matière assez importante. 

 

  

Mesure capillaire

Hypothèse du liquide newtonien

˙ γ a;τ w

Fluide newtonien ? Correction

b

=> b

˙ γ w = ˙ γ a
3 + b

4
# 
$ 

% 
& 

η =
τ w
˙ γ w

˙ γ a = ˙ γ w

oui non
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9.2 RHEOMETRE DE COUETTE 

 

Un écoulement de Couette est défini comme un écoulement d’un fluide cisaillé entre deux 

cylindres coaxiaux, comme le montre la Figure 9.5. On utilise ce type d’écoulement pour 

mesurer la viscosité. 

 

 
Figure 9.5. Schéma d’un rhéomètre de Couette. 

 

9.2.1 Détermination de la viscosité 

 

En équilibrant les moments le long des faces latérales, on trouve que : 

 

     avec    M = couple  (9.15) 

 

En supposant que l’espace d  = R0 – R1 entre les deux cylindres est très petit, c’est-à-dire  

R1 ≈ R0 = R, on écrit avec la condition d << R : 

 

  (9.16) 

 

où w est la vitesse de rotation du cylindre central. La viscosité s’obtient alors : 

 

  (9.17) 

 

L

2R0

2R1

M, ω

δ

ω

€ 

τ (r ) =
M

2πr 2L

€ 

˙ γ ≅ −
duθ
dr

=
ωR
δ

η = τ
!γ
= Mδ
2πR3Lω
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Dans la géométrie concentrique traitée ici, on a le taux de cisaillement à la surface du cylindre 

interne (rayon R1) tournant : 

 

  (9.18) 

 

Notons par ailleurs que lorsque d devient trop important, l’équation 9.16 n’est plus valable et 

on doit poser : 

 

  (9.19) 

 

 

9.2.2 Cas de fluides non-newtoniens 

 

Dans le cas d'un fluide de type loi de puissance, l'équation (9.15) donnant la contrainte reste 
valable, par contre le taux de cisaillement à la paroi du cylindre interne en rotation prend la 
forme : 

  (9.20) 

 

9.2.3 Avantages et inconvénients du rhéomètre de Couette 

 

- Avantage :  est constant si d << R,  peut être grand, et h peut être petit. 

- Désavantage : source d’erreur avec le film horizontal. 

 

  

!γ 1 = 2ω
R0 R1( )2
R0 R1( )2 −1

˙ γ = r ⋅ dω
dr

= r d
dr

uθ
r

% 
& 

' 
( 

!γ 1 =
2ω
n

R0 R1( )2 n
R0 R1( )2 n −1

˙ γ ˙ γ 
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9.3 RHEOMETRE CONE - PLAQUE 

 

Un écoulement entre un cône et une plaque dont l’un est en rotation permet, moyennant 

quelques hypothèses, de déterminer la viscosité. On construit des rhéomètres utilisant cet 

écoulement comme schématisé à la Figure 9.6, l’avantage principal étant d’obtenir un taux de 

cisaillement constant dans le fluide. 

 

 
Figure 9.6. Schéma d’un rhéomètre cône – plaque ou cône – plan. 

 

9.3.1 Détermination de la viscosité 

 

Les hypothèses pour déterminer la viscosité sont :  

- a est petit (<1°), 

- pas d'effet d'inertie, 

- t ,  constants selon r. 

Les lignes de fluide forment des cônes coaxiaux (ce qui explique que  est constant) et on 

trouve que : 

 
    car     cos a ≈ 1 (9.21) 

 

La cission t (r) est constante, car t est une fonction de  qui est constant et donc : 

 

 t (2pr.cosa dr) r cosa = dM (9.22) 

 

 

 

dr cos α

dy

R

r

r cos α

α

ω

dr

˙ γ 

˙ γ 

€ 

˙ γ =
uθ (r )
δ(r)

=
ωrcosα
rα

≈
ω

α

˙ γ 
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En intégrant, on a : 

 

  (9.23)
 

 

La viscosité est finalement : 

 

 
 (9.24)

 

 

9.3.2 Avantages et inconvénients du rhéomètre cône – plaque 

 

- Avantages :  pas besoin de grande quantité de fluide, la vitesse de cisaillement est 

uniforme dans le fluide, préparation et nettoyage de l’appareil facile. 

- Désavantages :  source d’erreur provenant des bords (extérieur de l’appareil) et du cône, 

mal adapté pour mesurer des fluides peu visqueux. 

 

9.4 RHEOMETRE A PLAQUES PARALLELES 

 

L’écoulement entre deux plaques parallèles dont l’une est en rotation, permet aussi de 

déterminer la viscosité d’un fluide. La géométrie est plus simple que la géométrie cône – plan. 

Le fonctionnement du rhéomètre utilisant cet écoulement est décrit à la Figure 9.7. 

 

 
Figure 9.7. Schéma d’un rhéomètre à plaques parallèles. 
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9.4.1 Détermination de la viscosité 

 

La vitesse de cisaillement  est nulle à r = 0 et maximale à r = R et n’est donc pas constante 

contrairement à la géométrie cône – plan. La rotation d’une plaque donne la relation : 

 

        (9.25) 

 

L’équilibre des moments fait que : 

 

 t(r) 2pr dr r = dM   (9.26) 

 

En intégrant, on trouve : 

 

  (9.27) 

 

d’où la viscosité : 

 

  (9.28) 

 

Dans le cas d’un fluide non-newtonien de type loi de puissance, on a : 

 

  (9.29) 

 

Et si la loi d’écoulement n’est pas connue, on a la relation : 

 

     (9.30)
 

 

Il s’agit d’une correction du type Rabinowitsch ( = Rw / d). 
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9.4.2 Avantages et inconvénients du rhéomètre à plaques parallèles 

 

- Avantages :  pas besoin de grande quantité de fluide, outillage simple, préparation et 

nettoyage de l’appareil facile. 

- Désavantages :  taux de cisaillement non-homogène, source d’erreur provenant des bords, 

mal adapté pour mesurer des fluides peu visqueux. 

 

9.5 EQUIVALENCE COX-MERZ 

 

Il est parfois difficile de réaliser des essais viscosimétriques avec un gradient de cisaillement 

 élevé et des déformations suffisamment grandes pour atteindre un état stationnaire. 

L’utilité des relations de Cox et Merz réside dans le fait qu’il est possible d’étendre la plage 

des taux de cisaillement dans le but de déterminer les fonctions matérielles (h,  G’, G’’, 

y1, ...)  d’un fluide donné. 

 

La relation de Cox-Merz illustrée à la Figure 9.8 établit l'équivalence entre  et la pulsation 

(µ fréquence) w. Les deux variables ont pour unité l’inverse d’un temps [s-1] : 

 

 
    où      (9.31) 

 

Il est à noter que les rhéomètres dynamiques peuvent atteindre une zone de 0.001 < w  < 100 

rad/s et les rhéomètres capillaires travaillent en général entre 0.1-10 <  < 10’000 s-1. Cette 

relation est bien suivie par les polymères à molécules flexibles, mais montre des faiblesses 

pour certains polyéthylènes à chaîne linéaires et branchées. Lorsque la loi de Cox-Merz est 

valable, il est alors possible de prédire G’ et G’’ connaissant la viscosité en fonction de la 

pulsation dans le plan complexe, définie comme : 
 

    et     (9.32) 
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Figure 9.8. Illustration de la relation de Cox-Merz dans le cas du polypropylène à 200°C : les mesures à basse et 
moyenne vitesse de cisaillement sont effectuées à l’aide d’un rhéomètre cône-plaque (en mode statique puis 
dynamique), et les mesures à grande vitesse de cisaillement proviennent d’un rhéomètre capillaire. 
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10 ECOULEMENTS TURBULENTS 
 

Ce chapitre aborde l'analyse des écoulements quand le nombre de Reynolds, Re, dépasse une 

certaine limite, et que l'on observe un changement de la relation entre le débit (ou la vitesse 

du fluide) et la chute de pression. On a vu au Chapitre 8 les solutions dans le cas 

d’écoulements laminaires Newtoniens ou non. Dans ce Chapitre qui reprend des éléments et 

quelques figures du livre Fluid Mechanics de F. White, nous ne considérerons que le cas 

Newtonien. 

 

10.1 APPARITION DE LA TURBULENCE 

 

Des mesures expérimentales avec un anémomètre ou un capteur de pression ont montré que 

quand la vitesse d’écoulement augmente, une petite perturbation de l’écoulement ne se 

stabilise plus rapidement comme c’est le cas d’un écoulement laminaire. Cet effet est 

schématisé à la Figure 10.1 et dépend de Re (transition vers 103 – 104) et de la rugosité de la 

surface sur laquelle le fluide s’écoule, qui crée des perturbations. 

 

 
Figure 10.1. Evolution temporelle d’une perturbation de la vitesse d’écoulement u et transition du régime 
laminaire vers le régime turbulent. 
 

Les valeurs de Re pour les différents régimes sont les suivantes : 
 
- Re < 1 écoulement à faible Reynolds, ou dit de "Stokes", ou creeping flow 

- Re < 1000  écoulement laminaire  

- 103 < Re < 104  écoulement transitoire (transition Re = 2300-2500 selon les sources) 

- 104 < Re < 106  écoulement turbulent, dépend de Re 

- 106 < Re écoulement très turbulent, ne dépend plus de Re 
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Dans le cas de l’écoulement laminaire on a vu au Chapitre 8 que le flux s’exprime selon : 
 

  (10.1) 
 
 

Et avec                     on obtient                          , c'est à dire que la chute de pression DP est 

proportionnelle à la vitesse moyenne de l’écoulement    . Quand Re augmente, on observe un 

changement de cette dépendance, ce que montre la Figure 10.2 : il faut augmenter beaucoup 

plus la pression pour un accroissement de vitesse donné, c'est à dire que le fluide résiste plus à 

l'écoulement. 
 

 
Figure 10.2. Dépendance de la chute de pression dans un écoulement en fonction de la vitesse moyenne de 
l’écoulement [F. White, Fluid Mechanics]. 
 

Tout cela a entraîné des recherches dans les années 1839-1900 pour tenter de modéliser ces 

effets très complexes, et atteindre des précisions d’environ 5 à 10% pour prédire les 

écoulements. Les analyses se fondent sur des expériences et sur des méthodes semi-

empiriques qui sont encore utilisées aujourd’hui en raison de leur simplicité d’usage. L’idée 

de base est de considérer les valeurs moyennes des vitesses locales dans le temps. 

 

Q = − ΔP
L

πR4

8η

Fig. 6.4 Experimental evidence of
transition for water flow in a !14!-in
smooth pipe 10 ft long.

mean values of velocity, pressure, force, etc. But turbulence can change the mean val-
ues dramatically, e.g., the sharp drop in drag coefficient in Fig. 5.3. A German engineer
named G. H. L. Hagen first reported in 1839 that there might be two regimes of vis-
cous flow. He measured water flow in long brass pipes and deduced a pressure-drop law

"p # (const) $ entrance effect (6.1)

This is exactly our laminar-flow scaling law from Example 5.4, but Hagen did not re-
alize that the constant was proportional to the fluid viscosity.

The formula broke down as Hagen increased Q beyond a certain limit, i.e., past the
critical Reynolds number, and he stated in his paper that there must be a second mode
of flow characterized by “strong movements of water for which "p varies as the sec-
ond power of the discharge. . . .” He admitted that he could not clarify the reasons for
the change.

A typical example of Hagen’s data is shown in Fig. 6.4. The pressure drop varies
linearly with V # Q/A up to about 1.1 ft/s, where there is a sharp change. Above about
V # 2.2 ft/s the pressure drop is nearly quadratic with V. The actual power "p % V1.75

seems impossible on dimensional grounds but is easily explained when the dimen-
sionless pipe-flow data (Fig. 5.10) are displayed.

In 1883 Osborne Reynolds, a British engineering professor, showed that the change
depended upon the parameter &Vd/', now named in his honor. By introducing a dye

LQ
!
R4
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10.2 ANALYSE DE LA TURBULENCE 

 

Les travaux de recherche du 19ème siècle ont été surtout développés dans le cadre des 

écoulements d’eau ou de gaz dans des conduites, raison pour laquelle on utilise souvent des 

termes hérités de la mécanique des fluides dans le génie civil ou hydraulique. Il est apparu 

que la rugosité des surfaces sur lesquelles le fluide s’écoule influence fortement l’écoulement 

du fluide. La démarche développée dans ce qui suit consiste à établir une relation entre la 

chute de pression et le débit dans une conduite, via un facteur de frottement à la paroi et la 

rugosité de cette dernière. 

 

10.2.1 Hauteur piézométrique 

 

On définit la hauteur piézométrique hg, selon le schéma de la Figure 10.3 : 

 

  (10.2) 

 

 
Figure 10.3. Schéma de la géométrie d’écoulement dans une conduite. 

 

10.2.2 Frottement 

 

Pour un écoulement incompressible l’équilibre des forces s’écrit : 

 

  (10.3) 

 

d’où : 

 

  (10.4) 

 

hg = Δz + ΔP
ρg

x

Δz
r

ϕ
Δz = ΔL sinϕ

ΔP + ρgΔz( )πR2 = τ w 2πR( )L

Δz + ΔP
ρg

= hg =
2τ wL
ρgR
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On définit le facteur de frottement f, lié à la contrainte à la paroi tw et donc à la hauteur 

piézométrique hg , et fonction du nombre de Reynolds (ReD pour la géométrie de la conduite 

de diamètre D) et de la rugosité e  de la paroi : 

 

  (10.5) 
 
on a également une relation explicite entre DP et f : 
 

  (10.6) 
 

Dans le cas d’un écoulement laminaire on a : 

 

  
  (10.7) 

on trouve alors que (avec D = 2R) : 

 

  (10.8) 

 
Dans le cas d’un écoulement turbulent ce résultat ne s’applique pas. 

 

10.2.3 Résolution des équations de Navier-Stokes pour un écoulement turbulent 

 

On part des hypothèses que la densité r et la viscosité h du fluide sont constantes, donc d’un 

fluide Newtonien incompressible. Ces hypothèses sont valables pour analyser l’écoulement 

d’eau ou de pétrole, mais pas de gaz. Les équations de continuité (conservation de masse) et 

de quantité de mouvement (Navier-Stokes) s’écrivent : 

 

  (10.9) 

  (10.10) 

f = 8τ w
ρu 2

=
hg
L
D
u 2

2g

= f Re, ε D( ) où u = Q
πR2

ΔP = f ρu
2

2
L
D

u = Q
πR2

=
− d
dx P + ρgz( )
2η

πR4

4πR2
et τ w = − d

dx
P + ρgz( ) R2

f =
8τ w
ρu 2

= 64η
ρuD

= 64
ReD

avec ReD =
ρuD
η

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0

ρ Du
Dt

= −∇P + ρg +η∇2u
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où D représente ici la dérivée totale : 

 

  (10.11) 

 

La résolution de l’équation de Navier-Stokes dans le cas laminaire dans une conduite 

cylindrique (ux(r), ur = 0, uq = 0), avec a été vue au Chapitre 8. Dans le cas turbulent les 3 

composantes de vitesse ux, ur et uq sont non nulles ce qui complique énormément la résolution 

de l’équation. En 1895 Reynolds propose alors de considérer la moyenne temporelle de la 

vitesse (voir la Figure 10.1) : 

 

  (10.12) 

 

où Q est la période de moyennage (de l’ordre de 5 s en pratique), supérieure à la période de 

fluctuations. La fluctuation est alors : 

 

  (10.13) 

 

Par définition la valeur moyenne des fluctuations est nulle ( ). On définit également leur 

intensité : 

 

  (10.14) 

 

On réécrit l’équation de Navier-Stokes en remplaçant u par , et de même, la pression P par 

P – P’. 

 

Sachant que pour des fonctions continues on a                   , les équations de continuité et de 

quantité de mouvement (sur x) prennent la forme : 

 

  (10.15) 

D!u
Dt

= d
!u
dt

+ !u grad !u

u = 1
Θ

udt
0

Θ

∫

u ' = u − u

u ' = 0

u '2 = 1
Θ

u '2 dt
0

Θ

∫ ≠ 0

u

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0

dux
dx

= dux
dx
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  (10.16) 

  
Le terme 2 dans l’équation 10.16 est non nul : 

 

  (10.17) 

 

où les contributions laminaires et turbulentes dominent à la paroi et loin de la paroi, 

respectivement, comme schématisé à la Figure 10.4. 

 

 
Figure 10.4. Profils de cisaillement (a) de vitesse (b) d’un écoulement turbulent au voisinage de la paroi [F. 
White, Fluid Mechanics]. 
 

La difficulté pour résoudre l’équation 10.15 a conduit Prandtl vers 1930 à formuler des 

hypothèses sous la forme de la fonction         . En considérant que l’on a 

comme on peut le voir à la Figure 10.4, on définit une vitesse normalisée : 

 

  (10.18) 

où  

  (10.19) 

 

ρ dux
dt

+ ρux
∂ux
∂x

+ ρuy
∂ux
∂y

+ ρuz
∂ux
∂z

=

− dP
dx

+ ρgx +
∂
∂x

η ∂ux
∂x

− ρux '
2⎛

⎝⎜
⎞
⎠⎟ +

∂
∂y

η ∂ux
∂y

− ρu 'x u 'y
⎛
⎝⎜

⎞
⎠⎟

2
! "### $###

+ ∂
∂z

η ∂ux
∂z

− ρu 'x u 'z
⎛
⎝⎜

⎞
⎠⎟

τ =η ∂ux
∂y

− ρu 'x u 'y = τ lam +τ turb

Fig. 6.8 Typical velocity and shear
distributions in turbulent flow near
a wall: (a) shear; (b) velocity.

geometry and flow conditions, as detailed in Refs. 1 to 3. Fortunately, in duct and
boundary-layer flow, the stress !"u!#!$!#! associated with direction y normal to the wall
is dominant, and we can approximate with excellent accuracy a simpler streamwise
momentum equation

" " ! % "g x % (6.15)

where & ' ( ! "u!#!$!#! ' &lam % &turb (6.16)

Figure 6.8 shows the distribution of &lam and &turb from typical measurements across
a turbulent-shear layer near a wall. Laminar shear is dominant near the wall (the wall
layer), and turbulent shear dominates in the outer layer. There is an intermediate re-
gion, called the overlap layer, where both laminar and turbulent shear are important.
These three regions are labeled in Fig. 6.8.

In the outer layer &turb is two or three orders of magnitude greater than &lam, and
vice versa in the wall layer. These experimental facts enable us to use a crude but very
effective model for the velocity distribution u!(y) across a turbulent wall layer.

We have seen in Fig. 6.8 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.
2. Outer layer: Turbulent shear dominates.
3. Overlap layer: Both types of shear are important.

From now on let us agree to drop the overbar from velocity u!. Let &w be the wall shear
stress, and let ) and U represent the thickness and velocity at the edge of the outer
layer, y ' ).

For the wall layer, Prandtl deduced in 1930 that u must be independent of the shear-
layer thickness

u ' f((, &w, ", y) (6.17)

By dimensional analysis, this is equivalent to

*u!+
*y

*&
+
*y

*p!+
*x

d u!+
dt
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représente une vitesse de frottement. On dit alors que : 

 

  (10.20) 

 

où n = h/r est la viscosité cinématique. Dans la zone turbulente loin de la paroi    ne dépend 

pas de h mais de la vitesse au loin, U et de l’épaisseur de la couche visqueuse d : 

 

  (10.21) 
 

Par exemple : 

 

  (10.22) 

 

Cette loi logarithmique traduit les tâtonnements empiriques de la science au 19ème siècle et 

donne de bons résultats pour les valeurs des paramètres k = 0.41 et B = 5 (Figure 10.5). 

 

 
Figure 10.5. Analyse expérimentale des lois de transition (à gauche, [F. White, Fluid Mechanics]) et détail de la 
relation logarithmique entre la vitesse normalisée de l’écoulement u+ et la distance normalisée à la paroi y+. 
 

u+ = F
yu f

ν
⎛
⎝⎜

⎞
⎠⎟

U − u = g δ ,τ w ,ρ, y( ) et U − u
u f

= G y
δ

⎛
⎝⎜

⎞
⎠⎟

u+ = u
u f

= 1
κ
ln

yu f

ν
⎧
⎨
⎩

⎫
⎬
⎭
+ B

Fig. 6.9 Experimental verification
of the inner-, outer-, and overlap-
layer laws relating velocity profiles
in turbulent wall flow.

nearly every turbulent-flow problem presented in this and the next chapter. Many ad-
ditional applications are given in Refs. 2 and 3.

EXAMPLE 6.3

Air at 20°C flows through a 14-cm-diameter tube under fully developed conditions. The cen-
terline velocity is u0 ! 5 m/s. Estimate from Fig. 6.9 (a) the friction velocity u*, (b) the wall
shear stress "w, and (c) the average velocity V ! Q/A.

Solution

For pipe flow Fig. 6.9 shows that the logarithmic law, Eq. (6.21), is accurate all the way to the
center of the tube. From Fig. E6.3 y ! R # r should go from the wall to the centerline as shown.
At the center u ! u0, y ! R, and Eq. (6.21) becomes

! ln $ 5.0 (1)

Since we know that u0 ! 5 m/s and R ! 0.07 m, u* is the only unknown in Eq. (1). Find the
solution by trial and error or by EES

u* ! 0.228 m/s ! 22.8 cm/s Ans. (a)

where we have taken % ! 1.51 & 10# 5 m2/s for air from Table 1.4.

Ru*
'

%
1

'
0.41

u0'
u*

6.3 Semiempirical Turbulent Shear Correlations 337

 30

25

20

15

10

5

0
1

y+ = yu*
10 102 103 10 4

Linear
viscous

sublayer,
Eq. (6.22)

Logarithmic
overlap

Eq. (6.21)

Experimental data

u+ = y+

In
ne

r l
ay

er

Outer law profiles:
Strong increasing pressure
Flat plate flow
Pipe flow
Strong decreasing pressure

u+  =
 

u u*

Overl
ap la

yer

ν

E6.3

u (  y)

y = R

y
r

r = R = 7 cm

u0 = 5 m    /s

Part (a)

u



 Ecoulements turbulents 10.8 

Rappelons que l’on cherche une relation entre la perte de charge et le débit, donc entre le 

frottement et Re. Testons l’expression logarithmique 10.22 dans le cas d’une conduite 

tubulaire, avec y = R – r : 

 

  (10.23) 

 

On calcule alors la vitesse de l’écoulement : 

 

  (10.24) 

 

Et avec k = 0.41 et B = 5 on obtient : 

 

  (10.25) 

 

Par ailleurs, en combinant les équations 10.8 et 10.19 on a : 

 

  (10.26) 

 

Finalement, en 1935 Prandtl réécrit la loi logarithmique en log10, ce qui donne : 

 

  (10.27) 

 

Cette relation relie le frottement au nombre de Reynolds de l’écoulement. Prandtl ajuste les 

facteurs numériques et corrige l’équation logarithmique sous la forme suivante, qui décrit 

l’écoulement turbulent dans des conduites lisses : 

 

  (10.28) 

u r( )
u f

≈ 1
κ
ln

R − r( )u f

ν
⎧
⎨
⎩

⎫
⎬
⎭
+ B

V = Q
πR2

= 1
πR2

u r( )2πr dr
0

R

∫ = 1
2
u f

2
κ
ln

Ru f

ν
⎧
⎨
⎩

⎫
⎬
⎭
+ 2B − 3

κ
⎛
⎝⎜

⎞
⎠⎟

V
u f

= 2.44 ln
Ru f

ν
⎧
⎨
⎩

⎫
⎬
⎭
+1.34

V
u f

= 8
f

1
f
= 1.99 log ReD f{ }−1.02

1
f
= 2 log ReD f{ }− 0.8
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Les profils de vitesse correspondants aux cas laminaire et turbulent sont schématisés à la 

Figure 10.6, le cas turbulent étant relié aux équations 10.27 et 10.28. On constate que le profil 

turbulent est aplati au milieu de l’écoulement, ce qui ressemble au profil pour un fluide 

rhéofluidifiant laminaire même si les causes physiques sont différentes.  

 

 
Figure 10.6. Profils de vitesse d’écoulement dans une conduite dans les cas laminaire et turbulent. 

 

10.2.4 Influence de la rugosité des parois 

 

Dans le cas d’un écoulement laminaire les parois ont peu d’effet. La vitesse à la paroi est en 

général nulle et le profil de vitesse pour un fluide Newtonien est alors parabolique comme 

démontré au Chapitre 8. Dans le cas d’un écoulement turbulent la rugosité de la paroi perturbe 

l’écoulement et influence fortement le profil de vitesse. Cet effet a été mis en évidence par 

Nikuradsé, étudiant de Prandtl, qui a analysé l’écoulement dans des conduites revêtues de 

grains de sable de rugosité calibrée. Il a mesuré DP et Q et en déduit la relation entre le 

frottement f et ReD. Ce résultat est montré à la Figure 10.7. 

 

 
Figure 10.7. Effet de la rugosité sur l’écoulement turbulent dans une conduite, avec décalage vers le bas et la 
droite (a) et relation entre le frottement et le nombre de Reynolds en régimes laminaire, transitoire et turbulent 
pour différents rapports rugosité/diamètre de conduite e/D (b). L’équation 10.28 correspond à l’équation 6.54 sur 
le diagramme et u* = uf [F. White, Fluid Mechanics]. 

umax umax

laminaire : parabolique turbulent : profile plus plat au milieu

Fig. 6.12 Effect of wall roughness
on turbulent pipe flow. (a) The log-
arithmic overlap-velocity profile
shifts down and to the right; (b) ex-
periments with sand-grain rough-
ness by Nikuradse [7] show a sys-
tematic increase of the turbulent
friction factor with the roughness
ratio.

For example, at Red ! 105, f ! 0.0180, and ys /d ! 0.001, a wall roughness of about
0.001d will break up the sublayer and profoundly change the wall law in Fig. 6.9.

Measurements of u(y) in turbulent rough-wall flow by Prandtl’s student Nikuradse
[7] show, as in Fig. 6.12 a, that a roughness height " will force the logarithm-law pro-
file outward on the abscissa by an amount approximately equal to ln "# , where "# !
"u*/$. The slope of the logarithm law remains the same, 1/%, but the shift outward
causes the constant B to be less by an amount &B ! (1/%) ln "# .

Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 6.12 b. We see that laminar friction is
unaffected, but turbulent friction, after an onset point, increases monotonically with the
roughness ratio "/d. For any given "/d, the friction factor becomes constant (fully rough)
at high Reynolds numbers. These points of change are certain values of "# ! "u*/$:

'
"u
$
*

' (5: hydraulically smooth walls, no effect of roughness on friction

5 )'
"u
$
*

' )70: transitional roughness, moderate Reynolds-number effect

'
"u
$
*

' *70: fully rough flow, sublayer totally broken up and friction
independent of Reynolds number

For fully rough flow, "# *70, the log-law downshift &B in Fig. 6.12 a is

&B ! '
%
1

' ln "# +3.5 (6.61)
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On peut classifier les écoulements comme suit : 

 

- e uf /n < 5 lisse 

- 5 < e uf /n < 70 transitoire 

- e uf /n > 70 rugueux 

 

A très haute vitesse, pour ReD ~ 105, i.e., dans le cas rugueux f devient constant, ce qui 
correspond à une chute de pression constante. On définit la rugosité normalisée :  
 

La zone rugueuse est décrite en adaptant la loi logarithmique : 

 

     où    (10.29) 

 

soit : 

 

  (10.30) 

 

conduisant à : 

 

  (10.31) 

 

qui ne dépend que de e /D, et pas de ReD. 

 

10.2.5 Diagramme de Moody 

 

En 1939 Colebrook reprend les travaux de Nikuradsé avec de vraies conduites. Il interpole les 

équations ‘lisse’ (10.28) et ‘rugueuse’ (10.31) et aboutit au résultat : 

 

  (10.32) 

u+ ≈ 1
κ
ln y+ + B − ΔB = 1

κ
ln y
ε
+ 8.5 ΔB ≈ 1

κ
lnε + − 3.5

V
u f

= 2.44 ln D
ε
+ 3.2

1
f
= −2 log ε /D
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⎧
⎨
⎩

⎫
⎬
⎭

1
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= −2 log ε /D
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⎧
⎨
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⎫
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Ce résultat majeur en mécanique des fluides, avec une précision d’environ 15% est représenté 

sous la forme d’un abaque par Moody en 1944 montré à la Figure 10.8. Ce diagramme permet 

de dimensionner des tuyaux, et, par exemple, de déterminer le niveau de rugosité limite pour 

permettre un débit donné. Ces résultats importants sont utilisés pour la conception de surfaces 

micro- et nano-structurées afin d’influencer l’écoulement via la couche visqueuse (effets 

‘shark skin’, éoliennes, capillaires pour applications en biotechnologies). 

 

L’équation (10.32) est difficile à résoudre pour f et une alternative explicite est due à 

Haaland : 

 

  (10.33) 

 

 

 
Figure 10.8. Diagramme de Moody [F. White, Fluid Mechanics]. 

 
  

1
f
= −1.8 log ε /D

3.7
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Fig. 6.13 The Moody chart for pipe
friction with smooth and rough
walls. This chart is identical to Eq.
(6.64) for turbulent flow. (From
Ref. 8, by permission of the ASME.)
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Table 6.1 Recommended
Roughness Values for Commercial
Ducts

!

Material Condition ft mm Uncertainty, %

Steel Sheet metal, new 0.00016 0.05 ! 60
Stainless, new 0.000007 0.002 ! 50
Commercial, new 0.00015 0.046 ! 30
Riveted 0.01 3.0 ! 70
Rusted 0.007 2.0 ! 50

Iron Cast, new 0.00085 0.26 ! 50
Wrought, new 0.00015 0.046 ! 20
Galvanized, new 0.0005 0.15 ! 40
Asphalted cast 0.0004 0.12 ! 50

Brass Drawn, new 0.000007 0.002 ! 50
Plastic Drawn tubing 0.000005 0.0015 ! 60
Glass — Smooth Smooth
Concrete Smoothed 0.00013 0.04 ! 60

Rough 0.007 2.0 ! 50
Rubber Smoothed 0.000033 0.01 ! 60
Wood Stave 0.0016 0.5 ! 40

Values of (Vd) for water at 60°F (velocity, ft/s × diameter, in)
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10.2.6 Conduites de section non circulaire 

 

Plusieurs facteurs autres que la rugosité de la paroi ont une influence sur les processus de 

dissipation dans un écoulement, en particulier la géométrie des conduites. Pour des conduites 

de section non circulaires on recourt à la notion de rayon hydraulique illustrée à la Figure 

10.9. 

 

 
 

Figure 10.9. Définition du rayon hydraulique pour une conduite de section non circulaire. 
 

Le diamètre hydraulique Dh = 4Rh, et non 2Rh parce que (voir équation 10.5) : 

 

  (10.34) 
 

D’autres facteurs, comme la variation du diamètre de la conduite comme dans le cas de 

contractions, d’expansions, de coudes, de valves, etc. doivent être pris en compte. Ceci peut 

être fait par l’ajout de longueurs additionnelles DL, comme par exemple la correction de 

Bagley dans le cas du rhéomètre capillaire vu au Chapitre 9. 

 

10.3 ECOULEMENT LIBRE AVEC CORPS IMMERGE ET COUCHE LIMITE 

 

Des écoulements dits libres (sans paroi) avec corps immergés, également appelés écoulements 

à couche limite sont omniprésents en pratique et donc en mécanique des fluides, comme par 

exemple en aéronautique, mais également pour des procédés de mise en œuvre par 

imprégnation de renforts par des fluides visqueux, ou les procédés de dépôts chimiques en 

phase vapeur (‘CVD’). 

 

  

Aire A = πR2 et périmètre P = 2πR

Rayon hydraulique équivalent Rh = A/P 

V = Q
A

et hg = f LV 2

4Rh ⋅2g
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10.3.1 Définition de la couche limite 

 

Considérons le problème schématisé à la Figure 10.10 d’une plaque de longueur L, de largeur 

b et d’épaisseur très petite dans un écoulement. Le fluide est ‘bloqué’ à la surface de la 

plaque, et donc localement la situation est la même que dans le cas de la conduite, et sa 

vitesse croit progressivement pour atteindre la vitesse du fluide non perturbé à une certaine 

distance de la paroi. On définit la couche limite comme le ‘lieu’ d(x) où la vitesse du fluide 

u = 0.99 u0.  

 

 
 

Figure 10.10. Ecoulements laminaires et turbulents perturbés par une plaque fine parallèle à l’écoulement. 
 

10.3.2 Equilibre des forces 

 

Regardons la contrainte à la paroi tw et la force de trainée (‘drag’) Fdrag : 

 

  (10.35) 

L’équilibre des forces est traité comme suit : 

 

  (10.36) 

 

où V représente le volume de fluide compris dans le périmètre 1-4 représenté à la Figure 

10.11. 

 

u0

L

b

u0

Laminaire
(parabolique)

Turbulent
(aplati avec 
couche limite)

δ

dFdrag = τ wdS = τ wbdx d'où
dFdrag
dx

= τ wb

!
Fdrag =

d
dt

m!u( ) projeté selon x: Fdrag =
d
dt

ρVu( )
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Figure 10.11. Domaine d’intégration pour la résolution de la couche limite [F. White, Fluid Mechanics]. 

 

On réécrit l’équation 10.36 : 

 

  (10.37) 

 
Et, selon le profil d’écoulement montré à la Figure 10.11 : 

 

  (10.38) 

 
Conservation de la masse 
 

  (10.39) 

 
d’où l’équation proposée par Kármán en 1921 : 

 

  (10.40) 

Fig. 3.11 Control-volume analysis
of drag force on a flat plate due to
boundary shear.

For the given numerical values we have

Rx ! "(1000 kg/m3)(0.0003 m2)(5 m/s)2! "7.5 (kg # m)/s2! "7.5 N Ans.

This acts to the left; i.e., it requires a restraining force to keep the plate from accelerating to the
right due to the continuous impact of the jet. The vertical force is

Fy ! Ry ! ṁ1$1 % ṁ2$2 " ṁj$j

Check directions again: $1 ! V1, $2 ! "V2, $j ! 0. Thus

Ry ! ṁ1(V1) % ṁ2("V2) ! &12&ṁj(V1 " V2) (6)

But since we found earlier that V1 ! V2, this means that Ry ! 0, as we could expect from the
symmetry of the jet deflection.9 Two other results are of interest. First, the relative velocity at
section 1 was found to be 5 m/s up, from Eq. (3). If we convert this to absolute motion by adding
on the control-volume speed Vc ! 15 m/s to the right, we find that the absolute velocity V1 !
15i % 5j m/s, or 15.8 m/s at an angle of 18.4° upward, as indicated in Fig. 3.10a. Thus the ab-
solute jet speed changes after hitting the plate. Second, the computed force Rx does not change
if we assume the jet deflects in all radial directions along the plate surface rather than just up
and down. Since the plate is normal to the x axis, there would still be zero outlet x-momentum
flux when Eq. (4) was rewritten for a radial-deflection condition.

EXAMPLE 3.11

The previous example treated a plate at normal incidence to an oncoming flow. In Fig. 3.11 the
plate is parallel to the flow. The stream is not a jet but a broad river, or free stream, of uniform
velocity V ! U0i. The pressure is assumed uniform, and so it has no net force on the plate. The
plate does not block the flow as in Fig. 3.10, so that the only effect is due to boundary shear,
which was neglected in the previous example. The no-slip condition at the wall brings the fluid
there to a halt, and these slowly moving particles retard their neighbors above, so that at the end
of the plate there is a significant retarded shear layer, or boundary layer, of thickness y ! '. The

3.4 The Linear Momentum Equation 153

9Symmetry can be a powerful tool if used properly. Try to learn more about the uses and misuses of
symmetry conditions. Here we doggedly computed the results without invoking symmetry.

y
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2
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4
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where shear stress

is significant

p = pa

y = δ

3
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u(y)

x
L

Fdrag =
d
dt

ρudV + ρU udA
A
∫

V
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Fdrag = −ρ u 0; y( )udA− ρ u L; y( )udA
3
∫

1
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= −ρ u0 −u0( )bdy
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∫ − ρ u L; y( )u L; y( )bdy
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δ

∫

= ρu0
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∫
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⎞
⎠⎟
u
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dy

0
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et : 

 

  (10.41) 
 

Ces deux équations sont résolues sur la base d’hypothèses sur u, ou sur le terme !	comme 

suit. 

 

10.3.3 Cas laminaire 

 

Dans le cas laminaire le profil de vitesses u(x ;y) est parabolique, ce que Kármán approxime : 

 

  (10.42) 

 
Ce qui permet d’obtenir les termes suivants : 

 

  (10.43) 

  (10.44) 

 
la couche limite laminaire : 

 

  (10.45) 

 

ainsi que le coefficient de frottement de peau (‘skin friction’), analogue au coefficient de 

frottement dans le cas de l’écoulement dans une conduite : 

 

  (10.46) 

 

 

τ w =
1
b
dFdrag
dx

= ρu0
2 dϑ
dx

u x;y( ) ≅ u0
2y
δ

− y2

δ 2

⎛
⎝⎜

⎞
⎠⎟
0 < y < δ x( )

τ w =η
du
dy y=0

≈ 2ηu0
δ

Fdrag = ρbu0
2 2
15

δ ϑ ≈ 2
15

δ⎛
⎝⎜

⎞
⎠⎟

δ
x
≈ 5.5

Rex
et Rex =

ρu0x
η

cf =
2τ w
ρu2

≈
8
15

Rex
= 0.73

Rex
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et le fameux coefficient de trainée qui, dans le cas d’un écoulement laminaire s’écrit : 
 

  (10.47) 
 

ce qui peut se généraliser pour tout corps de géométrie quelconque : 
 

  (10.48) 
 

où A représente l’une des aires suivantes : 

- aire frontale, i.e. projection du corps perpendiculairement à l’écoulement, utilisée pour 

des objets épais immergés, des automobiles, des missiles …, 

- aire de plan, i.e. projection de l’objet vu de dessus, utilisées pour des corps larges et 

plats comme des aileset hydrofoils, 

- aire mouillée, utilisée typiquement pour des bateaux 

 

On définit de façon analogue le coefficient de portance CL lié à la force de portance (‘lift’) Flift : 

 

  (10.49) 
 

Le Tableau 10.1 donne des valeurs de CD pour différentes géométries. 

 

10.3.4 Cas turbulent 

 

Dans le cas turbulent le profil de vitesses u(x;y) est donné par la loi logarithmique (équation 

10.22). La couche limite turbulente valable quand le corps n'est pas rugueux est donnée par : 

 

  (10.50) 
 

De nombreuses approximations ont été proposées pour calculer le coefficient de trainée CD 

dans ce cas, et plusieurs valeurs sont reportées au Tableau 10.1. On constate par ailleurs que 

CD ne dépend pas trop de Re en régime turbulent. 

CD =
Fdrag L( )
1
2 ρu2bL

CD =
Fdrag

1
2 ρu2A

CL =
Flift

1
2 ρu2A

δ
x
≈ 0.16
Rex

1/7
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Tableau 10.1. Coefficient de trainée de corps bidimensionnels pour Re > 104. 

 
 

 

   

 

458 Chapter 7 Flow Past Immersed Bodies

Table 7.2 Drag of Two-
Dimensional Bodies at Re ! 104
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11 CHEMORHEOLOGIE 
 

11.1 INTRODUCTION 

 

La chémorhéologie est, comme son nom l'indique, la rhéologie des systèmes qui réagissent 

chimiquement. Un exemple typique et d'application courante est celui des résines 

thermodurcissables, qui réticulent sous l'action de la chaleur et du temps, ce qui s'accompagne 

d'une augmentation considérable de la viscosité : le matériau passe de l'état liquide à l'état 

solide. En général, en rhéologie des liquides, on développe des techniques de mesure et 

d'analyse qui nécessitent de maintenir l'échantillon à la température désirée pendant un certain 

temps, au cours duquel on peut faire varier la fréquence de sollicitation, son amplitude, etc… 

Dans le cas de systèmes réactifs, on ne peut se permettre ceci, car la réaction avance au cours 

du temps et entre en compétition avec le temps nécessaire pour faire une mesure. Il faut donc 

développer de nouvelles approches. 

 

Les applications sont nombreuses dans le domaine de la mise en œuvre des composites et des 

polymères, mais il existe aussi de nombreux exemples dans ceux de la nourriture ou de la 

biologie. Par exemple, la mise en œuvre des composites par moulage par transfert de résine 

(Resin Transfer Molding, RTM) consiste à injecter une résine polyester ou époxyde dans un 

moule qui contient déjà les fibres assemblées en une préforme. On veut être sûr que la résine 

est suffisamment fluide quand on l'injecte et qu'elle le reste pendant tout le temps que dure 

l'imprégnation des fibres. Ensuite, il faut que la viscosité de la résine monte, jusqu'à ce que l'on 

ait une pièce assez solide pour pouvoir la démouler. Il est donc primordial, pour optimiser les 

paramètres de mise en œuvre, tels que la température ou la pression d'injection (qui dicte la 

vitesse de remplissage), de connaître précisément comment évolue la viscosité de la résine avec 

le temps et la température. D'autre part, chauffer davantage la résine baisse sa viscosité en un 

premier temps, ce qui rend l'infiltration plus rapide, mais cela augmente la vitesse de 

réticulation, donc la viscosité évoluera plus vite. Il faut donc trouver l'optimum. 

 

D'autres exemples plus pratiques se trouvent dans la vie de tous les jours. Quand on fait cuire 

un œuf, le blanc réagit chimiquement sous l'action de la chaleur pour réticuler et devenir un 

solide. Le lait fermente sous l'action des levures pour former un gel que l'on appelle yaourt. La 

farine et le lait, sous l'action de la chaleur, subissent une réaction de Maillard pour former un 
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solide que l'on appelle sauce blanche ou flan, suivant l'application et les quantités en jeu. La 

chémorhéologie est donc l'étude d'éléments essentiels de la vie courante. 

 

11.2 RAPPELS SUR LA RETICULATION DES THERMODURCISSABLES 

 

11.2.1 Chimie de la réaction 

 

Les résines thermodurcissables, par opposition aux thermoplastiques, sont des résines qui 

réagissent au cours de leur mise en œuvre pour former des liaisons chimiques irréversibles. Le 

matériau ne peut plus être fondu quand on le chauffe, il peut seulement devenir caoutchoutique 

et/ou se dégrader. Quelques exemples sont donnés ci-dessous : 

 

a) Une résine époxyde réticulée est constituée d'un monomère, par exemple un bisphénol A 

avec des groupements époxydes, et d'un durcisseur (le plus souvent une amine ou un 

anhydride). Ces deux composants sont montrés à la Figure 11.1. Ils réagissent pour ouvrir le 

groupement époxyde et former des liaisons chimiques. Au fur et à mesure de la réaction, de 

plus en plus de liaisons chimiques se forment, et un réseau tridimensionnel se met en place. 
 

 
 

Figure 11.1. Exemple de structure chimique d'une résine époxyde, où R représente deux groupements phénol, et 
d'un durcisseur anhydride. 
 
b) Une résine polyester, souvent utilisée pour faire des coques de bateau, des pièces de 

carrosserie automobile (Sheet Molding Compound), réticule après adjonction de styrène comme 

le montre la Figure 11.2. Comme toute réaction chimique, la réticulation d'un 

thermodurcissable est activée par la température suivant une loi d'Arrhenius. De plus, on peut 

quantifier l'avancement de la réaction en mesurant le degré de réticulation a : 
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10.2 RAPPELS SUR LA RETICULATION DES THERMODURCISSABLES 

10.2.1 Chimie de la réaction 

Les résines thermodurcissables, par opposition aux thermoplastiques, sont des résines qui 
réagissent au cours de leur mise en œuvre pour former des liaisons chimiques irréversibles. Le 
matériau ne peut plus être fondu quand on le chauffe, il peut seulement devenir caoutchoutique 
et/ou se dégrader. Quelques exemples sont donnés ci-dessous : 

a) Une résine époxyde réticulée est constituée d'un monomère, par exemple un bisphénol A 
avec des groupements époxydes, et d'un durcisseur (le plus souvent une amine ou un 
anhydride). Ces deux composants sont montrés à la Figure 10.1. Ils réagissent pour ouvrir le 
groupement époxyde et former des liaisons chimiques. Au fur et à mesure de la réaction, de 
plus en plus de liaisons chimiques se forment, et un réseau tridimensionnel se met en place. 

 

 
Figure 10.1 Exemple de structure chimique d'une résine époxyde, où R 

représente deux groupements phénol, et d'un durcisseur 
anhydride. 

 

b) Une résine polyester, souvent utilisée pour faire des coques de bateau, des pièces de 
carrosserie automobile (Sheet Moulding Compound), réticule après adjonction de styrène: 
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   (11.1) 

 
où DH est la chaleur de réaction mesurée par calorimétrie différentielle à balayage (DSC) à 

l'instant t, et DHTOT est la chaleur de réaction totale. 

 

 
Figure 11.2 Représentation symbolique et schématique d'un polyester insaturé non-réagi (à gauche) et réticulé (à 
droite), d'après Osswald. 
 

Un exemple de thermogramme DSC est donné à la Figure 11.3. Celui-ci représente le flux 

thermique, soit dH/dt, en fonction du temps. La chaleur de réaction au temps ti est donnée par 

l'intégrale sous la courbe jusqu'au temps ti, soit : 

 

  (11.2) 

 

 
Figure 11.3. Thermogramme (courbe de calorimétrie différentielle) montrant le flux de chaleur en fonction du 
temps pour la réticulation isotherme d'un vinyl-ester à différentes températures. 

  
α =

ΔH
ΔHTOT
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Figure 10.2 Représentation symbolique et schématique d'un polyester insaturé non-réagi (à gauche) et réticulé (à 
droite), d'après Osswald. 

 
Un exemple de thermogramme DSC est donné à la Figure 10.3. Celui-ci représente le flux 
thermique, soit dH/dt, en fonction du temps. La chaleur de réaction au temps ti est donnée par 
l'intégrale sous la courbe jusqu'au temps ti, soit : 

 

ΔH =
dH
dt0

ti
∫ dt  

 
Figure 10.3. Courbe de calorimétrie différentielle pour la réticulation isotherme d'un vinyl-ester à différentes 
températures. 

 
Le degré d'avancement suit en général une loi du type autocatalytique : 
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ΔH =
dH
dt0

ti
∫ dt
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Le degré d'avancement suit en général une loi du type autocatalytique : 

 

  (11.3) 

 

où k0 est la constante cinétique, E l’énergie d’activation, R la constante des gaz parfaits, T la 

température en Kelvin et n et m des paramètres appelés ordres réactionnels. 

 

On peut donc en général connaître, pour une température donnée, le degré d'avancement 

chimique de la réaction en fonction du temps. 

 

11.2.2 Rhéologie de la réaction 

 

Le mélange de départ est en général un liquide Newtonien (viscosité basse), constitué de petites 

molécules qui sont les unités de base du polymère. Au fur et à mesure que la réaction progresse, 

la masse moléculaire croît pour atteindre l'infini (dicté en fait par la taille de l'échantillon) et le 

liquide se transforme en solide. A la fin de la réticulation, on est en présence d'un solide visco-

élastique. Entre les deux, on a un matériau qui exhibe les propriétés du solide et du liquide, que 

l'on appelle un gel, comme indiqué sur la Figure 11.4.  

 

 
Figure 11.4. Evolution des propriétés d'une résine au cours de la réaction de réticulation, h est la viscosité, S la 
résistance du réseau au point de gel et G le module de cisaillement. 
 

La gélation ou le point de gel correspond à la formation d'un réseau infini tridimensionnel. C'est 

donc le point de transition entre le liquide et le solide. La viscosité tend vers l'infini et on 

commence à pouvoir mesurer le module de Young du matériau. 
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où k0 est la constante cinétique, E l’énergie d’activation, R la constante des gaz parfaits et n et 
m des paramètres apellés ordres réactionnels. 

On peut donc en général connaître, pour une température donnée, le degré d'avancement 
chimique de la réaction en fonction du temps. 

 
10.2.2 Rhéologie de la réaction 

Le mélange de départ est en général un liquide Newtonien (viscosité basse), constitué de petites 
molécules qui sont les unités de base du polymère. Au fur et à mesure que la réaction progresse, 
la masse moléculaire croît pour atteindre l'infini (dicté en fait par la taille de l'échantillon) et le 
liquide se transforme en solide. A la fin de la réticulation, on est en présence d'un solide visco-
élastique. Entre les deux, on a un matériau qui exhibe les propriétés du solide et du liquide, que 
l'on appelle un gel, comme indiqué sur la figure 10.4.  
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Figure 10.4. Evolution des propriétés d'une résine au cours de la réaction de réticulation, η est la viscosité, S la 
résistance du réseau au point de gel et G le module de cisaillement. 

 

La gélation ou le point de gel correspond à la formation d'un réseau infini tridimensionnel. 
C'est donc le point de transition entre le liquide et le solide. La viscosité tend vers l'infini et on 
commence à pouvoir mesurer le module de Young du matériau. 

Le temps de gel, pour une réaction à une température constante donnée, peut être calculé, 
car il correspond à un taux de conversion bien précis, qui est fonction de la fonctionnalité des 
matériaux en présence. Par exemple, typiquement pour un époxyde, le taux de conversion à 
gélation serait aux environs de 70%. Ce qui veut dire que le réseau est déjà tridimensionnel, 
mais la réaction n'est pas encore finie, et il reste encore des liaisons époxydes à ouvrir. Le 

Liquide Newtonien 

Liquide viscoélastique Solide viscoélastique 
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Le temps de gel, pour une réaction à une température constante donnée, peut être calculé, car il 

correspond à un taux de conversion bien précis, qui est fonction de la fonctionnalité des 

matériaux en présence. Par exemple, typiquement pour un époxyde, le taux de conversion à 

gélation est aux environs de 70%. Ce qui veut dire que le réseau est déjà tridimensionnel, mais 

la réaction n'est pas encore finie, et il reste encore des liaisons époxydes à ouvrir. Le matériau 

continue donc d'évoluer chimiquement, ce qui contribue à augmenter ses propriétés 

mécaniques, qui seront maximales quand la conversion est totale. 

 
Une autre grandeur importante à mentionner, qui n'est pas liée à proprement parler à la réaction 

chimique, mais qui est liée au fait que les matériaux thermodurcissables forment un réseau 

réticulé amorphe, est la transition vitreuse. Quand on refroidit un matériau amorphe, il ne 

cristallise pas à une certaine température, mais il passe à un état vitreux. Cet état est un état 

solide, mais correspond en fait à une structure liquide figée. Pour une résine thermodurcissable, 

le mélange de départ entre le monomère et le durcisseur est constitué de petites molécules et 

est souvent liquide à température ambiante, mais possède une température de transition 

vitreuse, Tg (appelée Tg0), en dessous de laquelle la résine est un solide vitreux non-réticulé. 

Quand la réaction progresse, les molécules deviennent plus grosses, donc plus faciles à figer, 

et donc Tg augmente. Quand tout le matériau est réticulé, Tg est maximale et est appelée Tg¥. 

 
Au cours d'une expérience de réticulation isotherme, comme Tg croît avec le taux de conversion, 

il arrive un moment où Tg devient égale à la température de cuisson : on est alors au temps de 

vitrification. En fonction du matériau et de la température de l'expérience, on atteint la 

vitrification avant (sol vitreux) ou après la gélation (sol-gel vitreux) comme nous le verrons 

plus en détails à la Section 11.4. En général, on essaie de se placer dans un domaine où la 

gélation intervient avant la vitrification, sinon les propriétés mécaniques du matériau ne sont 

pas très bonnes.  

 

11.3 MESURES RHEOLOGIQUES SUR DES SYSTEMES REACTIFS 

 

11.3.1 Le problème 

 

Il existe des méthodes spécifiques pour mesurer les propriétés rhéologiques des liquides et des 

solides, vues au Chapitre 9. Le problème, avec la chémorhéologie, est que l'on couvre une très 

large gamme de viscosité et de module quand on passe du liquide au solide, comme montré sur 
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la Figure 11.5. On peut donc mesurer indépendamment la viscosité, jusqu'à la limite de 

l'instrument ou la rupture de l'échantillon, et puis on peut ensuite mesurer le module sur le 

solide. Mais il reste alors une grande incertitude sur le temps de gélation, car aucune de ces 

méthodes ne peut être utilisée au voisinage du temps de gel. 

 

 
Figure 11.5. Schéma de l'évolution de la viscosité en cisaillement continu et du module d'équilibre d'un polymère 
qui réticule. 
 

11.3.2 La méthode 

 

La méthode couramment utilisée est d'effectuer un cisaillement oscillatoire de petite amplitude 

sur la résine maintenue dans le four d'un rhéomètre à plaques parallèles et de mesurer les 

modules G', G'', leur rapport tan(d   ) (voir Chapitre 3) et la viscosité. On applique une 

déformation : 

 
  (11.4) 

 
et on enregistre une contrainte déphasée d'un angle de déphasage d : 
 
  (11.5) 
 
Les modules de cisaillement ont donc une composante en phase, dite d'élasticité : 
 

  (11.6) 

 
et en opposition de phase, dite visqueuse ou de perte : 
 

  (11.7) 

 

  γ = Asin ωt( )

  τ = τ0 sin ωt + δ( )

  
! G = cos δ( ) ⋅ τ

γ

  
! ! G = sin δ( ) ⋅ τ

γ
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Le module complexe est alors : 
 

 (11.8) 
 
Il en est de même pour la viscosité : 

 

 (11.9) 

 (11.10) 

 (11.11) 

 

L'angle de déphasage est alors facilement calculé par : 

 

  (11.12) 

 

Des courbes de réponse typique sont données à la Figure 11.6. Au début, la viscosité et les 

autres paramètres baissent, car on est en phase de chauffe de l'échantillon, puis la température 

se stabilise à la valeur désirée. On observe qu'au bout d'un certain temps à la température T 

choisie, le module de perte G'' augmente fortement, suivi de G' et de la viscosité. Cela 

correspond aussi à une évolution de tan(d), et représente le fait que l'on atteint la gélation. 

Ensuite, G' et G'' se stabilisent, et G'' décroît au moment où la vitrification se produit. Un 

deuxième pic de tan(d) est aussi observé quand G'' cesse de croître fortement. On observe ainsi 

l'évolution en continu des grandeurs caractéristiques de la résine au cours de la réticulation. 

  G
∗ = " G 2 + " " G 2

  
! η =

! G 
ω

  
! ! η =

! ! G 
ω

  
η∗ =

G∗

ω

  
tan δ( ) =

" " G 
" G 
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Figure 11.6. Exemple de réponses obtenues en cisaillement oscillatoire entre des plaques parallèles. 

 

Une méthode similaire, très employée dans le cas des composites, est de placer la résine sur 

une mèche de fibres, qui est ensuite fixée par ses deux extrémités à des mors, que l'on sollicite 

de même en torsion oscillatoire de faible amplitude, voir Figure 11.7. Les réponses sont 

semblables, l'avantage de cette méthode est que l'on peut tester des résines déjà imprégnées sur 

les fibres par le fabriquant, et que l'on peut mesurer un module dès le début de l'expérience, car 

les fibres confèrent une rigidité mécanique à l'ensemble. Le problème est que l'on ne mesure 

pas les grandeurs intrinsèques de la résine quand on utilise une telle méthode. 

 

 
Figure 11.7. Diagramme schématique d'un pendule de torsion automatique pour les essais de torsion sur mèche. 
Un signal électrique analogue résulte de l'utilisation d'un rayon de lumière qui traverse une paire de polariseurs, 
dont un oscille avec l'échantillon. 

20.8 Chémorhéologie 
 

 

Une courbe de réponse typique est donnée sur la figure 20.6. Au début, la viscosité et les autres 
paramètres baissent, car on est en phase de chauffe de l'échantillon, puis la température se stabilise à la 
valeur désirée. On observe qu'au bout d'un certain temps à la température T choisie, le module de perte 
G'' augmente fortement, suivi de G' et de la viscosité. Cela correspond aussi à une évolution de tg(δ), et 
représente le fait que l'on atteint la gélation. Ensuite, G' et G'' se stabilisent, et G'' décroît au moment où 
la vitrification se produit. Un deuxième pic de tg(δ) est aussi observé quand G'' cesse de croître 
fortement. On observe ainsi l'évolution en continu des grandeurs caractéristiques de la résine au cours 
de la réticulation. 

 

 
 
 
 

Figure 20.6 Exemple de courbe obtenue en cisaillement oscillatoire entre des plaques 
parallèles. 

 

Une méthode similaire, très employée dans le cas des composites, est de placer la résine sur une 
mèche de fibres, qui est ensuite fixée par ses deux extrémités à des mors, que l'on sollicite de même en 
torsion oscillatoire de faible amplitude, voir figure 20.7. Les réponses sont semblables, l'avantage de 
cette méthode est que l'on peut tester des résines déjà imprégnées sur les fibres par le fabriquant, et que 
l'on peut mesurer un module dès le début de l'expérience, car les fibres confèrent une rigidité 

Temps [s] 

tan(δ) G’,G’’ 
et η∗ G’ 

η* 

G’’ 

tan(δ) 
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11.3.3 Mesure du temps de gel 

 

A partir des courbes de la Figure 11.6, on peut dire que le temps de gélation est atteint quand 

la viscosité ainsi que les modules augmentent brutalement. Pour obtenir une valeur précise, il 

existe plusieurs approches qui sont souvent utilisées : 

 

-  le premier pic de tan(d) correspond à une augmentation brutale du déphasage, donc au 

passage de l'état liquide visqueux à l'état solide viscoélastique. 

-  le point d'intersection de G' et G'', qui correspond à tan(d) = 1, peut aussi être pris comme 

point de gel, car il correspond au moment où la partie élastique du module prend le pas 

sur la partie visqueuse. Cette méthode est préconisée par la norme ASTM. 

-  le moment où la viscosité dépasse une certaine valeur, par exemple 100 Pa.s est parfois 

pris comme temps de gel (méthode pratique en milieu industriel). 

 

Ceci dit, le temps de gel ne devrait pas être fonction de la fréquence de sollicitation, à moins 

que la fréquence ne soit trop rapide et que la réaction chimique ne soit modifiée par le 

cisaillement, ou que l'on ait interférence avec un autre phénomène, tel que la vitrification. 

Cependant, les méthodes présentées ci-dessus donnent des résultats qui souvent peuvent varier 

avec la fréquence. Une troisième méthode, préconisée par Chambon et Winters permet de 

détecter de manière plus "scientifique" le point de gel, en faisant la mesure à trois fréquences 

différentes, et en prenant le point d'intersection de tan(d) pour les trois fréquences, en fonction 

du temps. La raison pour laquelle cette méthode est préconisée est rhéologique : au point de 

gel, comme montré sur la Figure 11.8, la résine a un comportement de type loi de puissance, et 

G' et G'' sont donc des droites dans un diagramme log-log en fonction du temps. 
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Figure 11.8. Modules d'élasticité et de perte (réduits) pour des échantillons de polydimethylsiloxane (PDMS) pour 
lesquels la réaction a été stoppée à des étapes intermédiaires de la conversion. Tc est l'instant correspondant au 
point de gel. Les courbes sont décalées d’une valeur A, pour qu'elles ne se superposent pas sur le dessin (Winter 
et Chambon, 1987). 
 

11.3.4 Mesure du temps de vitrification 

 

Il existe plusieurs méthodes de détection de la vitrification à partir de la réponse rhéologique 

(Figure 11.6). Cette détection reste toujours un peu difficile car la vitrification ne correspond 

pas vraiment à un changement important des propriétés rhéologiques de la résine, comme l'était 

le point de gel. En général, on peut dire que l'on atteint l'état vitreux quand le module de perte 

G'' cesse d'augmenter et commence à décroître, ce qui veut dire que la partie visqueuse du 

module perd de l'importance. Ceci peut correspondre à un second pic de tan(d). Trois critères 

pour déterminer la vitrification ont été proposés : 

 

-  pic de tan(d) à une fréquence de 1 Hz, 

-  maximum de G'' à 1 Hz, 

-  début ou fin de la dépendance en fréquence de G' (ce critère implique que la gélation 

survienne avant la vitrification). 

 

11.4 LE DIAGRAMME T-T-T 

 
Une fois que l'on est capable, pour une expérience de réticulation isotherme, de déterminer quel 

est le temps de gel, quelle est l'évolution de la viscosité, et quel est le temps de vitrification, on 
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peut commencer à construire un diagramme qui donne l'évolution de ces temps et de la viscosité 

pour chaque température. On peut rendre ensuite ce diagramme plus complet en ajoutant les 

valeurs des températures de transition connues. Cela donne finalement un diagramme Temps-

Température-Transformation (TTT), proposé par Gilham dans les années 80, similaire aux 

diagrammes TTT rencontrés en métallurgie. La Figure 11.9 donne un exemple d'un tel 

diagramme complet. 

 
Figure 11.9. Diagramme Temps-Température-Transformation pour un système polymère thermodurcissable 
réactif montrant les différents états rencontrés durant une réticulation isotherme (Gilham). 
 

On distingue plusieurs états : liquide, verre non gélifié, verre gélifié, sol-gel caoutchoutique, 

élastomère, matière carbonisée (char). On distingue aussi plusieurs températures vitreuses 

caractéristiques : 

 
- Tg0 est la température de transition vitreuse du mélange non réagi, 

- gelTg est la température pour laquelle le temps de gélation est égal au temps de 

vitrification, 

- Tg¥ est la température de transition vitreuse pour le matériau complètement réticulé. 

 
La ligne de réticulation complète (full cure) représente la ligne pour laquelle Tg = Tg¥, et sépare 

la région de gel vitrifié en sol-gel vitrifié, et gel vitrifié (au-dessus). La ligne de dévitrification 

correspond à la ligne où Tg passe en dessous de Tcuisson, et correspond à une dégradation du 

matériau. 
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Des lignes de contours iso-viscosité sont aussi représentées dans la zone liquide. Ces lignes 

sont espacées d'un facteur 10. Le diagramme montre aussi en pointillés le temps de séparation 

de phase. Ceci arrive quand une deuxième phase est préalablement dissoute dans le matériau, 

qui se sépare pendant la réticulation, si possible avant la gélation.  Ce cas est courant pour des 

époxydes où on introduit une phase caoutchoutique pour améliorer la ténacité. 

 

Ce diagramme est pratique pour déterminer la fenêtre de mise en œuvre d'une résine. Il faut en 

général se placer entre gelTg et Tg¥, pas trop au-dessus de Tg¥ car la dégradation risque de se 

produire. Grâce au diagramme, on peut déterminer, pour une température donnée, quand arrive 

le temps de gélation, et le temps de vitrification, et à peu près comment évolue la viscosité. On 

voit bien que plus la température est haute, plus la viscosité sera basse, mais plus les temps 

seront courts. 
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12 PHENOMENOLOGIE DES SUSPENSIONS ET EMULSIONS 
 

12.1 PHENOMENOLOGIE 

 

Une suspension est une dispersion de particules solides dans un fluide. Selon la concentration 

et la géométrie des particules on parle de suspensions diluées, semi-concentrées ou concentrées. 

On retrouve des suspensions dans de très nombreuses situations, en particulier dans les 

domaines alimentaire (pâtes), de la construction (béton), ou de la biologie (sang). La rhéologie 

des suspensions présente des comportements riches et complexes liés à la taille et à la forme 

des particules et aux interactions fluide-particules et entre les particules elles-mêmes. 

 

12.1.1 Classification et typologie 

 

Les liquides peuvent être divisés en sous-classes de liquides qui peuvent à leur tour être divisées 

et ainsi de suite. Une telle classification incluant les suspensions est représentée à la Figure 

12.1. 

 

 
Figure 12.1. Une des classifications possibles des liquides. 

 

Selon la taille des particules, les suspensions peuvent être classées en deux grandes catégories : 

les suspensions colloïdales où la taille des particules est inférieure à 1 µm et les suspensions 

Homogène Hétérogène

Suspensions
colloïdales

Suspensions
macroscopiques

Newtonien Non-newtonien Suspensions 
diluées

Suspensions 
concentrées

EmulsionsSuspensions / 
dispersions

Autres

‘molécules 
sphériques’
gaz parfait
eau 

‘longues molécules’
polymères fondus
salive

brouillard
mousses

Liquide

milk-shake
dentifrice

béton
riz au lait
pâte à papier

sang
encre
composites à 
matrice 
polymère

Autres

plancton
sperme

mousse
margarine
saucisse
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macroscopiques qui sont constituées essentiellement d’inclusions dont le diamètre est supérieur 

à 1 µm. Il existe d’autres critères de classification, tels la concentration, le type de suspension, 

la réactivité, etc…  

 

La présence d'une phase en suspension affecte la rhéologie du liquide de deux façons, formant 

la base de deux approches analytiques décrites comme suit. 

 

12.1.2 Effets hydrodynamiques et formation de réseaux 

 

Le premier effet lié à l’ajout de particules dans un fluide est hydrodynamique et concerne dans 

la plupart des cas des suspensions macroscopiques inertes. La Figure 12.2a illustre un champ 

de vitesse d’un écoulement homogène, et la Figure 12.2b un champ de vitesse d’écoulement 

perturbé par une seconde phase (suspension). Les caractéristiques de la suspension qui affectent 

le comportement de la solution sont : 

 

- la concentration ® interaction mécanique entre particules aux concentrations élevées, 

- la forme des particules (facteur de forme, rapport de dimensions, convexité), 

- la polydispersité (les particules ont des tailles différentes), 

- le rapport entre la taille des particules et celle du canal d’écoulement. 

 

La Figure 12.2 suggère que pour comparer la viscosité de suspensions de concentrations 

différentes, il faudrait les représenter sur un graphe qui montre la viscosité en fonction de la 

contrainte et non du taux de cisaillement. En effet, la vitesse de cisaillement locale est 

discontinue dans le fluide et différente d’une concentration à l’autre, ce qui n’est pas le cas de 

la contrainte. 

 

 
Figure 12.2. Champs de vitesse d’écoulement (a) pour une solution homogène et (b) pour une suspension. 

 

Le deuxième effet est la formation d’un réseau qui se crée dans des suspensions non-inertes ou 

des suspensions inertes fortement concentrées comme décrit à la Figure 12.3. Ce réseau, dans 

u u
(a) (b)
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le cas non-inerte, est constitué de liens déformables qui lient les particules entre elles. Dans le 

cas de suspensions inertes, le contact entre les particules présentant un coefficient de frottement 

élevé provoque la formation d’un réseau.  

 

 
Figure 12.3. Représentation schématique d’une suspension (a) non-inerte et (b) inerte formant un réseau. 

 

Les caractéristiques qui déterminent le comportement de la suspension sont : 

 

- sa stabilité dans le temps, 

- la géométrie des agrégats et flocons, 

- les propriétés des liens entre les particules, 

- la stœchiométrie, la géométrie des phases, miscibilité (émulsions, mélange de 

polymères), 

- la solvatation/l’adsorption. 

 

12.2 INTERACTIONS ET STABILITE DES SUSPENSIONS 

 

Les particules en suspension interagissent par le biais de forces de natures différentes. Les 

interactions qui apparaissent entre les particules d’une suspension concentrée sont diverses. On 

distingue les forces de répulsion comme les interactions de sphères dures, correspondant au 

fait que les particules solides ne peuvent pas s’interpénétrer, la répulsion électrostatique, les 

forces attractives de Van der Waals ainsi que les interactions browniennes résultant de 

l’agitation thermique et finalement les interactions hydrodynamiques. Du fait de ces forces, les 

particules se distribuent localement et collectivement selon une configuration instantanée 

particulière. Le comportement macroscopique de la suspension dépend par conséquent des 

variations des intensités des forces entre particules qui évoluent avec la configuration moyenne 

au cours de l’écoulement. 

 

 

liens déformables

particule fibre

points de contact

(a) (b)



12.4 Phénoménologie des suspensions 

12.2.1 Forces de répulsion 

 
Les interactions de sphères dures 
 
Les interactions de sphères dures sont des forces répulsives à courte portée qu’exercent les 

particules solides les unes sur les autres du fait de leur impénétrabilité. On représente ces forces 

avec un modèle de « cœurs durs » pour lequel l’énergie potentielle est nulle si la distance bord 

à bord est positive et infinie si cette distance est nulle.  
 
La force de répulsion stérique 
 
La force de répulsion stérique est due à l’adsorption de molécules à la surface des particules. 

Ces molécules peuvent être des polymères ou des agents tensioactifs. La répulsion a deux 

causes : 

 
- la pression osmotique liée à la présence d’une concentration élevée d’éléments de la 

chaîne du polymère adsorbé dans la région de recouvrement entre deux particules assez 

proches. 

- la diminution du nombre de configurations possibles des molécules adsorbées dans la 

région de recouvrement. 

 
Les forces de déplétion  

 
Les forces de déplétion se rencontrent dans le cas de suspensions contenant surtout des 

particules de tailles différentes. Considérons le cas de la suspension bidisperse où les grosses 

particules sont entourées par d’autres particules bien plus petites et plus nombreuses qu’elles 

comme montré à la Figure 12.4. Tant que les grosses particules restent isolées, elles sont 

bombardées par les petites sur toute leur surface. La pression osmotique exercée par les petites 

particules est partout égale sur la surface des grosses. 

 
Si deux grosses particules s’approchent d’une distance inférieure au diamètre des petites, ces 

dernières exercent une pression à la surface des grosses sauf dans la région où elles ne peuvent 

pas passer. Il en résulte un défaut de pression dans la région vide de petites particules, ce qui 

tend à rapprocher encore plus les grosses et il en résulte une force attractive entre elles. Le 

même phénomène se produit lorsqu’une grosse particule vient assez près d’une paroi.  
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Figure 12.4. Représentation des forces de déplétion dans le cas d’une suspension bidisperse. 

 

12.2.2 Le mouvement brownien 

 

Les molécules du fluide suspendant sont animées d’un mouvement dû à l’agitation thermique. 

Ces molécules échangent de l’impulsion avec les particules solides au cours des collisions 

qu’elles subissent. La quantité d’impulsion échangée par unité de temps c’est à dire la force 

que le fluide exerce, par l’intermédiaire de chocs, sur la particule est une quantité qui fluctue 

au cours du temps mais possède une valeur moyenne nulle. 

 

Dans le cas où les particules en suspension sont suffisamment petites (d < 1µm) ces collisions 

peuvent entraîner une série d’accélérations et donc une série de déplacements aléatoires des 

particules. Ce mouvement tend à éloigner les particules solides en suspension de leurs positions 

initiales même en absence d’écoulement macroscopique. 

 

Le mouvement brownien est caractérisé par un coefficient de diffusion D, introduit par Einstein 

en 1905, sous la forme du rapport entre l’énergie d’agitation thermique kT de la suspension et 

d’un facteur de traînée visqueuse (Stokes) qui dépend de la taille des particules, a, ainsi que la 

viscosité h du fluide :  

 

  (12.1) 

 

Ainsi le coefficient de diffusion augmente quand la taille des particules diminue. Cette approche 

est pertinente pour décrire l’homogénéisation au cours du temps des suspensions colloïdales  

 

a6
kTD
πη

=
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12.2.3 Les interactions de van der Waals 

 

Les forces de van der Waals résultent des fluctuations thermodynamiques du champ 

électromagnétique à l’intérieur et autour des particules. En effet, les atomes induisent les uns 

sur les autres des moments dipolaires et les moments induits engendrent une interaction 

attractive entre les atomes. La portée de cette force attractive ne dépasse pas quelques dizaines 

de nanomètres. En première approximation et pour deux sphères de diamètre d et séparées d’une 

distance h cette force s’écrit : 

 

  (12.2) 

 

où A est la constante de Hamaker relative aux deux milieux (particules et fluide) et varie entre 

10-20 J et 10-18 J, de l’ordre de l’énergie thermique à la température ambiante kT.  

 

12.2.4 Les interactions hydrodynamiques  

 

L’effet de ce type d’interactions est fondamental puisqu’il provient du simple fait de la présence 

des particules au sein de la suspension. Sous écoulement, chaque particule induit des 

perturbations du champ de vitesse qui sont d’autant plus importantes que l’on se trouve près 

d’elle. Ainsi le fluide en écoulement exerce une force sur chaque particule compte tenu de la 

présence des autres. Ces interactions sont complexes et dépendent du type d’écoulement 

imposé, de la nature du fluide suspendant ainsi que de la distribution spatiale des particules. 

Les forces hydrodynamiques sont des forces de dissipation visqueuse. Nous précisons par la 

suite l’importance de ces interactions par rapport aux interactions browniennes et colloïdales 

dans nos expériences. 

 

Comparaison avec les interactions browniennes  

 

Le nombre adimensionnel (Cf. Chapitre 1) de Péclet compare les effets de l’énergie liée au 

mouvement de convection caractéristique d’une particule dans le fluide à ceux de son énergie 

thermique : 

 

2VW h24
dAF −=
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(12.3)

 
 

L’énergie de convection d’une particule de taille a soumise à une force hydrodynamique est le 

produit de la force                   et de la taille de la particule. Une valeur de Pe  

élevée indique que le transport de particules par diffusion brownienne est négligeable par 

rapport au transport par convection, comme schématisé à la Figure 12.5. 

 
Figure 12.5. Domaines de prédominance entre interactions de type Brownien (agitation thermique) et 
hydrodynamiques, en fonction du nombre de Peclet. 
 

Comparaison avec les forces de van der Waals : 

 

Le rapport des interactions hydrodynamiques et de Van der Waals fait apparaître un nombre 

sans dimension NH/vdW, qui mesure l’importance relative de ces deux effets : 

 

  (12.4) 

 

où A est la constante de Hamacker dont la valeur est de l’ordre de l’agitation thermique kT. Au 

cours d’une collision la distance minimale de séparation entre deux particules est donnée par la 

taille des aspérités qui se trouvent à leur surface.  

 

12.2.5 Les forces électrostatiques 

 

Lorsque des particules sont mises en suspension dans un fluide qui comporte des ions, une 

charge électrique peut apparaître à la surface des particules. Cette charge peut être présente 
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avant la mise en suspension des particules dans le liquide ou bien apparaître après la mise en 

suspension. En effet, il peut y avoir soit dissociation de groupes de surface par le fluide, soit 

adsorption d’ions de la solution dans le cas d’une solution ionique.  

 
La double couche 
 

Une particule chargée tend à s’entourer d’ions de signes opposés comme schématisé à la Figure 

12.6. Ces ions diffusent sous l’effet de l’agitation thermique, de sorte qu’il existe autour de la 

particule une distance de non-neutralité. L’organisation spatiale des charges électriques sur la 

particule chargée est appelée double couche électrique. L'adsorption d'ions ou leur 

concentration accrue près d'une surface crée un potentiel électrique Yi qui forme une couche 

électronique diffuse. Un tel potentiel est également décrit à la Figure 12.6.  

 

        
 
Figure 12.6. Diagramme montrant la concentration ionique autour d’une particule dans un fluide (à gauche, source 
Wikipedia) et évolution du potentiel électrique en fonction de la distance de la surface d’une particule chargée (à 
droite). 
 

Gouy et Chapman ont proposé, grâce à certaines approximations simplificatrices, une 

expression du potentiel électrostatique Y autour d’une sphère chargée, qui s’écrit : 

 

  (12.5) 

 

où  est la longueur de Debye, avec  la constante diélectrique du liquide, e0 la 

permittivité du vide, n la concentration en ions dans le liquide, e la charge unitaire et z la valence 

Ψ0

Ψ0
e

potentiel Ψ

κ-1

ζ

double
couche solvant

x

x
0e

κ−Ψ=Ψ

22
01

zne2
kTεε

=κ− ε



 Rhéologie 12.9 

 

 

des ions. Cette longueur nous donne la portée de la répulsion électrostatique. Elle délimite un 

volume autour de la particule au-delà duquel les autres particules n’interagissent pas de manière 

électrostatique avec la particule considérée.  

 

Notons que dans le cas d’une suspension colloïdale le nombre de Péclet s’écrit comme suit : 

 

  (12.6) 

 

Considérons maintenant non plus une mais deux particules séparées d’une distance h. Lorsque 

ces particules s’approchent l’une de l’autre, une force répulsive se développe. Le calcul de cette 

force est complexe. Toutefois, si la couche de Debye est petite devant le rayon a des particules 

(ka >>1) et si la distance h les séparant est grande (kh >> 1), les interactions électrostatiques 

décroissent de façon exponentielle :  

 

  (12.7) 

 

Pendant un écoulement, un plan de glissement hydrodynamique se forme entre la première 

couche adsorbée et les suivantes. Le potentiel à ce plan est appelé potentiel zêta z ou potentiel 

électrocinétique et se calcule avec la relation : 

 

  (12.8) 

 

où h est la viscosité de l'électrolyte, ve est la vitesse d’électrophorèse (déplacement de la 

particule chargée sous champ électrique), E le champ électrique imposé et FH la constante 

d’Henry. Le potentiel zêta z est un indice du gradient de potentiel électrique. L'interaction entre 

deux doubles couches détermine l'attraction ou la répulsion entre deux particules. La Figure 

12.7 représente le potentiel zêta ainsi que la viscosité en fonction de la fraction volumique des 

ions. Une suspension est généralement stable pour des potentiels zêta supérieurs à 25 mV, et à 

l’inverse aura tendance à coaguler ou floculer pour des valeurs inférieures à 10 mV. Notons 

que l’électrophorèse est une méthode d’analyse basée sur le fait que les seules forces subies par 

le liquide en mouvement sont la force électrostatique directe et le frottement visqueux. 
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Figure 12.7. Evolution de la viscosité et du potentiel zêta en fonction de la fraction volumique des ions. 

 

12.2.6 Coagulation et floculation 

 

La coagulation est la déstabilisation d’une suspension colloïdale par l’utilisation d’un sel ou par 

une modification du pH. La floculation est la déstabilisation d’une suspension colloïdale par 

l’utilisation d’un polymère ou d’un agent tensioactif. La stabilité d’une suspension colloïdale 

est contrôlée par : 

 

- l’encombrement stérique, 

- la valence des ions, 

- la diélectricité du solvant, 

- la présence ou l’absence de particules hydrophobes, 

- l’épaisseur de la couche limite donc par k -1, 

- le potentiel zêta z, 

- le pH du solvant, 

- la température. 

 

Les systèmes floculés ont un comportement non-newtonien dicté en grande partie par les 

changements du réseau formé par les particules lors d'une déformation. Leur caractérisation 

doit se baser sur une analyse des composants et de leur état de dispersion ou d’agrégation. La 

Figure 13.2 regroupe les trois types d’interactions propres aux colloïdes : le recouvrement des 

doubles couches, l’attraction polaire et l’attraction hydrophobe. 

 

ζ, η

φions
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Figure 12.8. Schéma de trois cas d’interactions : (a) le recouvrement des doubles couches, (b) l’attraction polaire 
et (c) l’attraction hydrophobe. 
 

12.2.7 Bilan des forces d’interaction et théorie DLVO 

 

L’une des plus importantes propriétés physiques des suspensions est leur stabilité dans le temps, 

liée à la tendance des particules à former des agrégats par des processus de coagulation ou de 

floculation. Ces agrégats ont une masse plus élevée que les particules individuelles qui les 

constituent et ont tendance à sédimenter.  

 

La stabilité d’une suspension dépend de la somme de l’interaction des forces répulsives 

(électrostatique, stérique et de déplétion) et des forces attractives (de Van der Waals, polaire) 

entre ses particules. La Figure 12.9 représente les trois potentiels d’interaction présents dans les 

suspensions colloïdales ainsi que leur somme. Lorsqu’on fait le bilan global des interactions 

entre deux particules on obtient une énergie potentielle d’interaction qui peut avoir en fonction 

de la distance entre les particules des allures variées et ce selon l’importance relative des 

diverses composantes de cette énergie. Quand la distance entre deux particules diminue, 

l’énergie potentielle augmente considérablement. La suspension reste stable tant qu’on ne 

fournit pas aux particules une énergie (mécanique, thermique …) supérieure à la barrière de 

potentiel.  
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Figure 12.9. Bilan des interactions entre particules dans une suspension en fonction de la distance entre particules. 
On note VdW le potentiel attractif de van der Waals, Vel le potentiel répulsif électrostatique et Vsd le potentiel de 
répulsion de sphères dures. Le graphe de gauche montre les interactions fondamentales et celui de droite montre 
leur somme. 
 

La théorie DLVO (Derjaguin, Landau, Verwey et Overbeek) décrit l’énergie potentielle 

d’interaction entre deux particules en fonction de leur distance. Celle-ci diminue rapidement et 

passe par un minimum qui correspond au contact entre les particules. Il y a alors agrégation et 

formation d’amas de particules. Si l’agitation thermique de la suspension ou les forces 

répulsives sont suffisantes le phénomène d’agrégation est négligeable et la suspension reste 

stable. Pour une distance plus grande, les particules peuvent aussi former des doublets très 

faiblement liés (minimum secondaire). Si l’énergie potentielle qui correspond à ce minimum 

secondaire est supérieure à kT, il y alors floculation. Dans le cas où l’énergie thermique 

moyenne kT est inférieure à la barrière de potentiel, ce mouvement aura pour effet de ramener 

les particules dans des distributions spatiales plutôt isotropes. 

 

12.2.8 Synthèse phénoménologique des écoulements de suspensions 

 

La Figure 12.10 synthétise la richesse de comportements rhéologiques de suspensions de 

particules solides dans un fluide, en fonction de la concentration des particules et du taux de 

cisaillement appliqué à la suspension. Les transitions entre les différents régimes sont décrits 

avec les nombres adimensionnels. Le nombre de Péclet, Pe, correspond à la transition entre les 

régimes Brownien et hydrodynamique visqueux. Le nombre de répulsion Nr (rapport entre les 

interactions de Van der Waals et l’agitation thermique) correspond à la transition entre les 

régimes Brownien et colloïdal, lorsque la concentration de particules augmente (e.g., la distance 

entre particules diminue). Les autres nombres adimensionnels montrés sur la figure sont le 

nombre Γ, rapport des interactions visqueuses et colloïdales, le nombre de Reynolds Re qui 

VdW

Vel

Vsd

χ > kT⇒ floculation

agrégation
barrière de potentiel

χ
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décrit la transition vers la turbulence, le nombre de Leighton Le pour la transition entre régimes 

visqueux et de frottement, et le nombre de Bagnold Ba pour la transition entre régimes visqueux 

et de collision. La concentration fm correspond à la concentration maximale dans le cas d’une 

suspension aléatoire (fm ≈ 0.635 pour des particules sphériques monodisperses) et fc correspond 

à la concentration minimale pour que des particules forment un réseau (fc ≈ 0.5 pour des 

particules sphériques monodisperses). 

 

 
Figure 12.10. Diagramme synthétique des régimes d’écoulement de suspensions de particules solides dans un 
fluide en fonction de la concentration de particules et de la vitesse de cisaillement appliquée à la suspension 
(D’après C. Ancey, EPFL).  
 

 

12.3 EMULSIONS 

 

Nous terminons ce Chapitre en décrivant les émulsions qui sont type particulier mais assez 

courant de suspensions colloïdales. Une émulsion est définie comme étant une préparation 

obtenue par la division d’un liquide en gouttelettes au sein d’un autre liquide avec lequel il ne 

peut pas se mélanger et incluse par exemple la mayonnaise et des crèmes cosmétiques. Une 

émulsion se compose donc de deux phases liquides non-miscibles. 

 

 



12.14 Phénoménologie des suspensions 

12.3.1. Stabilité des émulsions 

 

La stabilité d’une émulsion est créée par la formation d'un film entre les deux phases au moyen 

d'un surfactant (par exemple un lipide polaire) qui réduit la tension superficielle. Dans le cas 

d’une émulsion huile–eau, les molécules de surfactant sont constituées d’une partie hydrophobe 

et d’une partie hydrophile. L’énergie des interfaces détermine la morphologie de l'émulsion. La 

viscosité dépend de la géométrie et de la concentration des phases. L’interface des deux phases 

de l’émulsion huile - eau est représentée schématiquement sur la Figure 12.12. 

 

 
Figure 12.12. Représentation schématique des interfaces d’une émulsion eau–huile. 

 

Les deux phases non-miscibles sont séparées par un film de cristal liquide lamellaire consistant 

en une couche simple ou double de surfactant. La taille des particules est donnée par la tension 

interfaciale entre les deux phases, les propriétés rhéologiques des interfaces et l’histoire des 

écoulements subis par l’émulsion. Des exemples d’émulsions sont : 

 

- la mayonnaise (eau - huile), 

- le lait (eau - graisse), 

- les crèmes cosmétiques 

- les mélanges de polymères, 

- les mousses (la phase dispersée est sous forme gazeuse), 

 

12.3.2 Inversion de phase 

 

Bien que le type de composants soit le même, la viscosité d'une émulsion est complètement 

modifiée par le changement de la concentration des composants. En effet, en ajoutant 

suffisamment du composant de la phase dispersée, celle-ci peut devenir la phase continue. Ce 

phénomène est appelé inversion de phase. 

eau

huile

surfactant
avec leurs
parties:
hydrophobe
hydrophile
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L’inversion de phase est également contrôlée par le type et la concentration de surfactant ainsi 

que par la température. Cette inversion peut être illustrée par un diagramme de phase comme 

le montre la Figure 12.12. 

 

 
Figure 12.12. Diagramme de phase d’une émulsion eau–huile. 

 

12.3.3 Exemple : la margarine 

 

La margarine est une émulsion d'eau dans l'huile. La phase dispersée est constituée d’eau, de 

sel et d’agents conservateurs. Dans quelques cas, des protéines du lait sont utilisées. La phase 

continue est composée d’huile végétale hydrogénée ou occasionnellement de graisse animale. 

La lécithine et le monoglycéride sont généralement ajoutés dans la phase huileuse. La 

margarine contient entre 40% et 80% d’huile. 

 

La margarine est formulée de manière à posséder des bonnes propriétés sensorielles, comme sa 

fusion dans la bouche ou sa capacité à être épandue. Elle doit aussi rester semblable au beurre. 

En limitant la fraction de graisse dans la margarine, il est difficile de formuler un produit 

semblable au beurre. En effet, l’émulsion eau–huile devient plus difficilement stable et il existe 

un risque d’inversion de phase. 

 

 

 



12.16 Phénoménologie des suspensions 

Les essais rhéologiques permettent de quantifier la texture de la margarine et sa capacité à être 

tartinée afin de la comparer au beurre. Le problème principal lors des mesures rhéologiques est 

le glissement aux parois du rhéomètre, ce qui fausse les valeurs réelles de la viscosité. En 

général, la margarine suit un modèle rhéologique appelé modèle de Bird-Leider : 

 

  (12.9) 

 

où m et n sont les paramètres de la loi de puissance, t le temps, l une constante de temps et a et 

b des constantes ajustables. 
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13 RHEOLOGIE DES SUSPENSIONS 
 

La présence de particules solides dans le fluide a fondamentalement pour conséquence 

d’augmenter la viscosité apparente. Les diverses forces d’interactions interparticulaires 

induisent un accroissement de la dissipation d’énergie au sein de la suspension en écoulement. 

L’accroissement de la viscosité de la suspension est alors associé à l’énergie qu’il faut dépenser 

pour déplacer les particules les unes par rapport aux autres. Dans ce qui suit, nous allons 

examiner l’influence de la fraction volumique des particules ainsi que celle de leur 

configuration et de leur distribution granulométrique sur la viscosité apparente de la suspension. 

 

13.1 SUSPENSIONS DE PARTICULES SPHERIQUES 

 

13.1.1 Suspensions diluées 

 

Dans le cas d’une suspension diluée, les particules sont suffisamment éloignées les unes des 

autres pour qu’on puisse les considérer comme étant indépendantes et négliger ainsi les 

interactions hydrodynamiques entre les particules. Dans ces conditions, on peut facilement 

estimer le champ des vitesses du fluide autour de chaque particule. En supposant un non 

glissement du fluide à la surface des sphères, l’expression de la viscosité h est donnée par la 

formule d’Einstein : 

 

  (13.1) 
 

où h0 est la viscosité du fluide, f la fraction volumique de particules et ke un coefficient, égal à 

2.5 dans le cas de sphères. Les valeurs de ke pour d’autres géométries sont répertoriées dans le 

Tableau 13.1. La relation d’Einstein est basée sur les équations cinématiques d'un flux laminaire 

dans un réseau très dilué de particules sphériques. La viscosité relative en fonction de la fraction 

volumique des particules et le comportement réel sont reportés à la Figure 13.1a. La Figure 

13.1b montre l’évolution du coefficient d’Einstein (ke) en fonction de la concentration. 

 

L’équation 13.1 donne de bonnes prédictions pour les expériences menées avec des suspensions 

diluées, de concentration inférieure à 2%. En revanche les courbes expérimentales s’écartent 

de la théorie dès que la concentration augmente. 

η =η0 1+ keφ( )



13.2 Rhéologie des suspensions 

Tableau 13.1. Valeur du coefficient d’Einstein ke en fonction de deux géométries de particules et de la direction 
du flux par rapport aux particules. 
 

Type de particules Valeur de ke Schéma du fluide et particules 

- sphériques 2.5 

 
- cubiques 3.1 

 
-réseau de fibres  
  (flux parallèle) 

2L/d 

 
- réseau de fibres  
  (flux transversal) 

1.5 

 
 

 
Figure 13.1. Evolution de la viscosité relative h/h0 (a) et du coefficient d’Einstein (b) en fonction de la fraction 
volumique de particules. 
 

13.1.2. Suspensions semi-concentrées 

 
La Figure 13.1a montre que le comportement réel dévie rapidement de l'équation donnée. Il est 

possible d’augmenter la plage de validité en ajoutant des termes d’ordre supérieur. La relation 

d’Einstein prend alors la forme d’un développement viriel : 

 
 hrel = 1+ 2.5f + kHf 

2 + ...     (13.2) 

 
où kH est appelé coefficient de Huggins. L'ordre de l'équation se réduit si on réarrange les termes 

sous la forme d’une viscosité réduite hred : 

 
  = 2.5 + kHf + ... (13.3) 
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La Figure 13.1b illustre ce concept, et la pente de la courbe correspond au terme kH. De plus, 

on a la relation suivante : 

 

 hred(f ® 0) = ke = [h] (13.4) 

 

Par la suite, on utilisera seulement la viscosité intrinsèque [h] pour représenter cette variable. 

Un calcul tenant compte des interactions de paires dans différents types d’écoulements a été 

effectué par Batchelor et Green en 1972. Ils ont trouvé pour des suspensions macroscopiques à 

fort nombre de Peclet une valeur de kH égale à 7.6 pour un écoulement élongationnel, et 5.2 

pour un cisaillement simple. L’équation (13.2) donne de bonnes prédictions pour des 

suspensions concentrées jusqu’à 10%. Au-delà de cette concentration, la viscosité dépend 

fortement de la fraction volumique des particules.  

 

L'équation de Mooney décrit également le comportement de suspensions semi-concentrées en 

faisant intervenir une fraction maximale de compactage fmax, définie à la section suivante : 

 

  (13.5) 
 

La Figure 13.2 illustre la dépendance de la viscosité d’une suspension de particules sphériques 

monodisperses en fonction de la fraction volumique des particules. Cette dépendance est 

fortement non linéaire, au-delà de f » 0.4 une légère variation de la fraction volumique induit 

une augmentation significative de la viscosité. 

 

 
Figure 13.2. Viscosité relative d’une suspension en fonction de la fraction volumique de particules. 
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Figure 12.2 

 

 

12.1.3. Suspension concentrée 

D’après les paragraphes précédents, on constate qu’au fur et à mesure que la fraction 

volumique des particules augmente, la loi proposée donne de moins en moins satisfaction. 

L’interaction entre les particules cause une élévation rapide de la viscosité. Si les particules 

sphériques monodispersées de la solution sont concentrées dans le solvant newtonien, il faut 

affiner les relations précédentes.  

Une autre approche souvent utilisée par les rhéologues est l’approche de type milieu 

effectif. Les suspensions sont traitées comme des milieux continus : les particules et le fluide 

sont considérés comme un milieu homogène continu de viscosité !  qui ne dépend que de la 

concentration en particules et de la viscosité du fluide. De là, si on ajoute une faible fraction 

de particules !" <<1, on peut supposer que l’on aura une variation linéaire de la viscosité en 

fonction de la concentration : 
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13.4 Rhéologie des suspensions 

13.1.3. Suspensions concentrées 

 

D’après les paragraphes précédents, on constate qu’au fur et à mesure que la fraction volumique 

des particules augmente, la loi proposée donne de moins en moins satisfaction. L’interaction 

entre les particules cause une élévation rapide de la viscosité. Si les particules sphériques 

monodisperses de la solution sont concentrées dans le solvant newtonien, il faut affiner les 

relations précédentes.  

 

Une autre approche souvent utilisée par les rhéologues est l’approche de type milieu effectif. 

Les suspensions sont traitées comme des milieux continus : les particules et le fluide sont 

considérés comme un milieu homogène continu de viscosité h qui ne dépend que de la 

concentration en particules et de la viscosité du fluide. De là, si on ajoute une faible fraction de 

particules df << 1, on peut supposer que l’on aura une variation linéaire de la viscosité en 

fonction de la concentration : 

 

  (13.6) 
 

avec [h] la viscosité intrinsèque locale de la suspension définie par : 

 

  
(13.7)

 
 

Il faut cependant noter que le volume accessible aux particules ajoutées n’est pas le volume 

total du liquide mais une fraction de ce volume qu’on note 1 – af où a  est un facteur qui tient 

compte de l’encombrement stérique. On peut alors écrire : 

 

  
(13.8)

 
 

En intégrant l’équation précédente on obtient l’expression de Krieger et Dougherty : 

 

  
(13.9)

 

η φ + dφ( ) ≈η φ( ) 1+ η[ ]dφ( )
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où a-1 est appelé la concentration critique pour laquelle la viscosité diverge. En effectuant un 

développement limité de premier ordre en f, on retrouve l’équation d’Einstein pour [h] = 2.5. 

Par ailleurs si on assimile la concentration critique de divergence à la concentration maximale 

de compactage fmax, l’équation précédente devient : 

 

  
(13.10)

 
 

La concentration maximale fmax dépend de la nature de l’écoulement et de la distribution 

spatiale et granulométrique des particules. Dans le cas d’une suspension de sphères 

monodisperses, fmax prend différentes valeurs suivant l’arrangement des sphères. Ainsi on 

distingue deux sortes d’arrangements : aléatoire ou régulier. Le premier peut être lâche 

(fmax = 0.56) ou dense (fmax = 0.64). Quant à l’arrangement régulier, il se fait suivant différents 

réseaux auxquels correspondent différentes fractions de compactage comme montré à la Figure 

13.3. On trouve 0.524 pour un réseau cubique simple (a), 0.605 pour un empilement carré 

mono-décalé (b) ou triangulaire simple (d), 0.698 pour un empilement carré bi-décalé (c) ou 

triangulaire mono-décalé (e) et 0.74 pour un empilement triangulaire bi-décalé (f). Cette 

formule est aussi applicable pour le cas de suspensions bidisperses ou polydisperses en adaptant 

la valeur de l’exposant et de la compacité maximale au système étudié. 

 

 
                (a)                 (b)                   (c)               (d)                (e)                   (f) 

 
Figure 13.3. Types d’empilements compacts réguliers. 

 

Certaines valeurs de la fraction volumique à capacité maximale sont présentées dans le Tableau 

13.2 en fonction des dimensions et des formes des particules sphériques ou fibreuses. 
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Tableau 13.2. Valeur de la fraction volumique à capacité maximale pour différentes géométries de particules. 
 

Type de particules Arrangement des particules 

dans la suspension 
Valeurs de fmax 

 

Sphères 

 

Compactes 

Non compactes 

 

0.64 

0.60 

 

Fibres 1 dimension 

3 dimensions, l/d = 2 

3 dimensions, l/d =4 

3 dimensions, l/d =8 

3 dimensions, l/d =16 

3 dimensions, l/d =50 

0.82 

0.67 

0.63 

0.48 

0.3 

0.1 

 

Notons par ailleurs que la distribution des particules au sein d’une suspension soumise à un 

écoulement ne reste pas homogène au cours du temps. En effet, les inclusions solides ont 

tendance à s’orienter dans des directions privilégiées si elles ne sont pas sphériques ou à migrer 

à travers le fluide au cours de l’écoulement et à s’organiser les unes par rapport aux autres. Il 

en résulte une variation de la viscosité en fonction du temps ou du taux de cisaillement. Ainsi, 

la suspension peut présenter un caractère thixotrope, rhéofluidifiant ou rhéoépaississant. Une 

répartition ordonnée des particules au sein du fluide conduit en général à une suspension moins 

visqueuse qu’une répartition désordonnée. 

 

13.2 AGREGATION ET SOLVATATION DES PARTICULES 

 

13.2.1 Suspensions concentrées avec formation d’agrégats  

 

Dans le cas où des agrégats se forment on adapte l’équation 13.9 comme suit : 

 

  
(13.11)

 
 
où fa représente la fraction volumique des agrégats donnée par : 

 

  (13.12) 

ηrel = 1− φ
φmax

⎛
⎝⎜

⎞
⎠⎟

− η[ ]φmaxφa

φa =
VS

VS +VL



 Rhéologie 13.7 

 

 

où VS est la somme des volumes des sphères qui forment l’agrégat et VL le volume du solvant 

emprisonné à l’intérieur de l’agrégat. La somme VS + VL correspond au volume total de 

l’agrégat. 

 

13.2.2 Adsorption de solvant à la surface des particules (solvatation) 

 

L’adsorption de solvant à la surface des particules accroît la taille et la concentration effective 

des particules, comme le montre la Figure 13.4. A noter que l’épaisseur de l’interface peut être 

comparable à la taille des particules, en particulier quand celle ci est nanométrique. La figure 

montre également une particule de forme arbitraire sous forme solvatée. Le solvant piégé à la 

surface de la particule diminue le volume du liquide libre. 

 

             
Figure 13.4. Représentation schématique d’une particule sphérique solvatée et physique d’une particule de forme 
quelconque solvatée. 
 

L’immobilisation du solvant à la surface de la particule conduit à au changement de volume 

suivant : 

 

  (13.13) 

 

où Veff est le volume effectif (solvaté) de la particule et Vpart son volume non-solvaté. De là, la 

fraction volumique est modifiée comme suit : 

 

  (13.14) 

 

où fsolv est la fraction volumique des particules solvatées et fsec la fraction volumique des 

particules sèches. La viscosité, pour le cas de particules sphériques monodisperses diluées dans 

un solvant newtonien, est : 

 

  (13.15) 
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13.8 Rhéologie des suspensions 

13.3 SUSPENSIONS DE PARTICULES NON-SPHERIQUES 

 

13.3.1 Influence du rapport de forme 

 

L'effet d'une particule allongée sur la rhéologie d’une suspension dépend de son orientation par 

rapport à l'écoulement. Une géométrie simplifiée est l'ellipsoïde comme représenté à la Figure 

13.5, présentant un rapport des dimensions (ou rapport de forme, aspect ratio) ar égal à a/b. Un 

rapport de forme inférieur à 1 correspond à des particules sous forme de disques alors qu’un 

rapport de forme supérieur à 1 correspond à des fibres. 

 

 
 

Figure 13.5. Schéma d’une particule ellipsoïdale de grand axe a et de petit axe b. 

 

Pour décrire la viscosité d’une suspension de particules non-sphériques présentant une 

orientation aléatoire on utilise l’équation de Simba : 

 

  
(13.16)

 
 

où l est un coefficient qui change selon la forme : 

 

  (13.17) 

 

Pour un ellipsoïde, l vaut 1.5 et pour un prisme cylindrique (fibre), l vaut 1.8. La Figure 13.6 

montre la forte influence du rapport de forme sur la viscosité intrinsèque [h], dans le cas où il 

est soit inférieur à 1 (correspondant à des particules sous forme de disques) soit supérieur à 1 

(cas des fibres). 

 

a

b

η[ ]= ar
2

15 ln 2ar( )− λ( ) +
ar
2

5 ln 2ar( )− λ +1( ) +
14
15

λ = ar
2 −1
ar
2 +1
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Figure 13.6. Viscosité intrinsèque isotrope de suspensions diluées d’ellipsoïdes de révolution en fonction de leur 
rapport de forme Af (Af < 1 correspond à des disques, Af > 1 correspond à des fibres). 
 

La Figure 13.7 montre un exemple de mesures de viscosité de suspensions de PMMA pour 

différentes tailles des particules. La figure montre la viscosité relative et la viscosité réduite 

correspondante (équation 13.3). Lorsque la taille moyenne  et f = 0.175, on mesure 

une viscosité intrinsèque de 5.8 (ordonnée à l’origine de la figure 13.5b).  

 

 
Figure 13.7. Evolution de la viscosité relative (a) et réduite (b) de suspensions de PMMA en fonction de la taille 
et de la fraction volumique de particules. 
 

Si la suspension est constituée de particules sphériques solvatées, on a : 

 

 [h] = 5.8 = 2.5 [1+3(DR/R)]     Þ    DR/R = 0.44 (13.18) 

 

Si les particules sont elliptiques non-solvatées, le rapport des dimensions est  @ 5.0.  

 Rhéologie 12.11 

 

 

 

 

 

 

 

12.6.2. L’orientation des fibres 

La règle de la dynamique d’orientation de fibres en régime dilué, a été établie par Jeffrey 

(1922). Il a fait le bilan des forces et des moments exercés par le fluide sur une particule. Il y a 

deux règles d’orientations: 

 

1) Un écoulement en cisaillement aligne les fibres dans la direction du flux, ceci est décrit 

à la figure 12.10 (a). 

2) Un écoulement en traction aligne les fibres dans la direction de la traction, ceci est 

décrit à la figure 12.10 (b). 

 

 
Figure 12.10 Illustration des deux règles d’orientation: (a) en cisaillement, (b) en extension. 

 

Le centre de gravité de la particule se déplace avec le fluide. Il y a un effet couplé, car si le 

flux influence l’orientation des fibres, l’orientation des fibres influence aussi le flux. Il faut 

retenir que l’orientation des fibres modifie la viscosité de la manière suivante: 
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ORDER                        REPRINTS

VISCOSITY OF PARTICLE DISPERSIONS 571

FIG. 1. Isotropically averaged [η] of dilute dispersions of ellipsoids of revolution.
The aspect ratio is defined as Af = (c/a), where c is the length of the ellipsoid along its
axis of symmetry and a = b is the length of the ellipsoid in the normal direction. Af > 1
corresponds to prolate ellipsoids (top right, approximating fibers at large Af), Af = 1 to
spherical particles (top middle), and Af < 1 to oblate ellipsoids (top left, approximating
platelets at large 1/Af). In the bottom figure, squares indicate exact results [8], and the
curve represents a fit to the squares (Eq. 2).

larger than 1). Pe is a dimensionless shear rate defined as the ratio of the time-
scales for rotary Brownian motion and convective motion:

Pe = γ̇
Dr

= 6V?η(dispersing fluid)?F?γ̇
kBT
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FIG. 1. Isotropically averaged [η] of dilute dispersions of ellipsoids of revolution.
The aspect ratio is defined as Af = (c/a), where c is the length of the ellipsoid along its
axis of symmetry and a = b is the length of the ellipsoid in the normal direction. Af > 1
corresponds to prolate ellipsoids (top right, approximating fibers at large Af), Af = 1 to
spherical particles (top middle), and Af < 1 to oblate ellipsoids (top left, approximating
platelets at large 1/Af). In the bottom figure, squares indicate exact results [8], and the
curve represents a fit to the squares (Eq. 2).

larger than 1). Pe is a dimensionless shear rate defined as the ratio of the time-
scales for rotary Brownian motion and convective motion:

Pe = γ̇
Dr

= 6V?η(dispersing fluid)?F?γ̇
kBT

(3)    d = 38µm
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13.10 Rhéologie des suspensions 

D’autres facteurs entrent en compte, notamment le facteur de forme et la polydispersité. Ils 

peuvent être déterminés tous deux sous le microscope. La polydispersité peut également être 

déterminée par sédimentation. 

 

13.3.2 Suspension de fibres 

 

La forme des particules, tout comme leur orientation, est importante pour déterminer leurs 

interactions. En particulier, la forme des particules détermine leur degré d'interaction, et donc, 

la transition d'un régime dilué à un régime concentré. Une suspension de sphères à 3% est 

"diluée". Mais des fibres longues (rapport de forme L/d élevé) forment déjà un réseau 

"concentré" à cette fraction volumique. Les Figures 13.8 (a) et (b) illustrent ce principe. 

 

 
Figure 13.8. Deux suspensions de même fraction volumique : pour (a), il s’agit d’une suspension diluée, tandis 
que pour (b), elle est concentrée.  
 

Il y a d’autres facteurs de forme, par exemple : 

 

- le rapport de forme, 

- la surface, le rapport (surface/volume), 

- l’alignement. 

 

Régimes de concentration 
 
Pour des fibres de longueur L et de diamètre d on définit plusieurs régimes de concentration en 

fonction de la fraction volumique des fibres f comme illustré à la Figure 13.9. 

(a) (b)
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Figure 13.9. Représentation graphique des différents régimes d’interaction en fonction du rapport L/d et de la 
concentration de fibres. 
 

Chaque plage est définie mathématiquement comme suit, selon le nombre N de fibres par unité 

de volume représentatif : 

 

- Dilué : N< 1    ou    , 

- Semi-concentré : 1 < N < 60    ou    , 

- Concentré : N > 60    ou    . 

 

Pour des particules sphériques, on utilise la condition sur N, et pour les fibres, la condition sur 

L/d. Le régime semi-concentré équivaut au régime semi-dilué (terme parfois utilisé). Le volume 

représentatif est un volume dont la dimension caractéristique est supérieure ou égale à la 

longueur d’une fibre individuelle. 

 

Orientation des fibres 
 

La règle de la dynamique d’orientation de fibres en régime dilué a été établie par Jeffery (1922). 

Il a fait le bilan des forces et des moments exercés par le fluide sur une particule. Il y a deux 

règles d’orientations décrites à la Figure 13.10 : 

 

1) Un écoulement en cisaillement aligne les fibres dans la direction du flux, 

2) Un écoulement en traction aligne les fibres dans la direction de la traction. 
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13.12 Rhéologie des suspensions 

 
Figure 13.10. Illustration des deux règles d’orientation : (a) en cisaillement, (b) en extension. 

 

Le centre de gravité de la particule se déplace avec le fluide. Il y a un effet couplé, car si le flux 

influence l’orientation des fibres, l’orientation des fibres influence aussi le flux. Il faut retenir 

que l’orientation des fibres modifie la viscosité de la manière suivante : 

 
  (13.19) 

 
Dans ce paragraphe, seul le cas dilué a été traité. L’étude du de suspensions semi-concentrées 

de fibres est beaucoup plus complexe, car il peut y avoir des collisions entre particules. Le 

régime concentré est en revanche un peu plus simple à décrire, car la répartition est 

statistiquement homogène. Nous avons par ailleurs considéré que les fibres étaient rigides. En 

pratique, des fibres de rigidité finie peuvent se courber, et le traitement de la rhéologie de telles 

suspensions est particulièrement difficile. 

 

13.4 EFFETS DYNAMIQUES ET SEUIL D’ECOULEMENT 

 

L’effet de l’ajout de particules sur la viscosité d’un fluide est montré sur la Figure 13.11. L’ajout 

de particules dans un fluide provoque : 

 
- une augmentation de la viscosité (la courbe de la Figure 13.11 est translatée vers le haut), 

- une augmentation du temps de relaxation (l) (la courbe de la Figure 13.11 est translatée 

vers la gauche). 

- lorsque la concentration en particules est élevée, une droite de pente -1 se superpose au  

plateau newtonien aux basses vitesses de cisaillement. Cette droite correspond au 

comportement du réseau de particules et elle est caractéristique d’un seuil d’écoulement. 

 

13.4.1 Seuil d’écoulement 

 

Le seuil d’écoulement correspond à une certaine contrainte minimale (t0) qui doit être exercée 

pour que l’écoulement ait lieu. Cela veut dire que si on applique une contrainte au-dessous de 
 

τ

τ

σσ

(a) (b)

η// >η⊥
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Figure 13.11. Evolution de la courbe de viscosité en fonction de la fraction de particules pour une suspension 
inerte. 
 

la contrainte critique d’écoulement (t0), le matériau ne s’écoule pas, tandis que si on applique 

une contrainte supérieure au seuil d’écoulement, le matériau va s’écouler comme un fluide. Le 

seuil d’écoulement est ainsi une propriété du matériau dénotant la transition entre les 

comportements solide et liquide. Ce seuil illustre le minimum de contrainte de cisaillement 

correspondant au premier signe d’écoulement. L’origine du seuil d’écoulement provient des 

interactions entre les particules et de la formation de réseaux (voir paragraphe précédent). 

 

Il est à noter qu’il faut toujours définir un temps d’observation durant lequel on décide si le 

matériau s’écoule ou non. Il n’est pas exclu qu’un écoulement soit observé pour des temps 

beaucoup plus longs (phénomène de fluage). Il est donc judicieux de parler de seuil 

d’écoulement apparent. 

 

Le seuil d’écoulement peut être pris en compte dans la modélisation du comportement des 

suspensions comme schématisé à la Figure 13.12. Le modèle le plus simple est celui de 

Bingham (1922) qui fait correspondre à la suspension un solide rigide pour des contraintes 

inférieures au seuil d’écoulement et un liquide newtonien pour des contraintes supérieures au 

seuil. 

 

 !̇ = 0    si    t ≤ t0 (13.20a) 
 
 #	 = &'

(̇ + #*    si    t > t0 (13.20b) 
 

où hN est la viscosité Newtonienne. 
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13.14 Rhéologie des suspensions 

Un modèle plus complexe considère, pour des contraintes supérieures au seuil d’écoulement, 

un comportement liquide régi par une loi de puissance. Il s’agit du modèle de Herschel-Bulkley 

(1926) : 

 

 #	 = &'
(̇ + +!̇

,-.    si    t > t0 (13.21) 

 

 
Figure 13.12. Comparaison du modèle Newtonien avec des modèles non-Newtoniens. 

 

Finalement, dans le cas le plus général, on utilise une équation basée sur le modèle de Carreau-

Yashuda (voir Chapitre 7) : 

 

     si    t > t0 (13.22) 

 

Il faut remarquer que le comportement solide peut aussi être représenté par un module élastique 

t = Gg  si t ≤ t0. 

 

13.4.2 Modes et exemples de comportement non-newtonien 

 

Une grande diversité de comportements rhéologiques sont observés dans les suspensions. Ces 

comportements sont classifiés selon des modes, en fonction de la vitesse de cisaillement et du 

temps comme exposé dans des Chapitres précédents et résumé dans le Tableau 13.3. Plusieurs 

exemples illustrent ces différents comportements comme suit. 
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Tableau 13.3. Différents modes de comportement. 
 

Variables augmentées h augmente h baisse 

Vitesse de cisaillement Rhéoépaississant ou Dilatant  

(sable mouillé, suspension céramique) 

Rhéofluidifiant ou Pseudoplastique 

(boues, peinture) 

Temps Rhéopeptique 

(latex, sable) 

Thixotrope 

(sables mouvants, ketchup) 

 

Argiles 
 
Les argiles sont des minéraux constitués par l’empilement de feuillets orthosilicates liés par des 

liaisons ioniques. Ces matériaux sont hydrophiles et les feuillets peuvent se disperser dans l’eau, 

donnant lieu à des suspensions instables, thixotropes, dont le comportement réversible est 

illustré à la Figure 13.13. 

 

 
Figure 13.13. Comportement de suspensions aqueuses d’argiles. 

 
Beurre 
 
Le beurre est une émulsion stable d’eau dans des lipides, légèrement thixotrope, formant des 

bandes de cisaillement. Son comportement réversible est illustré à la Figure 13.14 

 

 
Figure 13.14. Comportement du beurre. 
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13.16 Rhéologie des suspensions 

Gels 
 

Les gels sont des suspensions instables, thixotropes, formant des réseaux. Leur comportement 

réversible est décrit à la figure 13.15. 

 

 
Figure 13.15. Comportement des gels. 

 
Mousses 
 

Les mousses sont des émulsions dans lesquelles il y a coalescence des particules. Leur 

comportement irréversible est illustré à la Figure 13.16. 

 

 
Figure 13.16. Comportement d’une mousse. 
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14 ETUDE DE CAS 
 

14.1 LA PEINTURE1 

 

Une peinture est un matériau fluide, liquide ou pulvérulent qui, appliqué sur un support, donne 

par un processus physique ou chimique, un film mince adhérent, protecteur et/ou décoratif. Il 

existe quatre grandes familles de constituants : 

 

- Liants qui apportent les principales propriétés au revêtement et formeront un film 

protecteur. C’est le plus important, déterminant la classe de la peinture ; 

- Solvants qui mettent le liant en solution et donnent la fluidité à la peinture pour sa 

fabrication et son application. Leur élimination permet la formation du film ; 

- Matières pulvérulentes : ce sont d’abord les pigments, pour la couleur, l’opacité, la 

résistance à la corrosion et aussi les matières de charge pour renforcer le revêtement ou 

contrôler le brillant, par exemple ; 

- Additifs qui ont une action sur la fabrication, le stockage, la formation et la protection 

du film. La création de film protecteur est directement liée à la phase de séchage… 

 

Le séchage se fait par un mécanisme physique suivi ou non d’une réaction chimique : 

 

- Le séchage physique est obtenu par évaporation à l’air. C’est soit l’élimination du 

solvant soit la fusion des particules de liant qui assure la cohésion du film et son 

adhérence au support, selon la peinture. 

- Le séchage chimique est obtenu sous l’action de l’oxygène de l’air ou par élévation de 

la température, par l’adjonction d’un second liant ou déclenché par des catalyseurs, 

entre autres. 

-  

Pour l’étude d’un produit, il faut premièrement savoir ce qu’on désire obtenir de celui-ci. Quel 

est son cycle de vie, son cahier des charges, ses caractéristiques ... Pour le cas de la peinture, 

on peut généraliser aux points suivants : 

 

                                                
1 Référence d’une partie du texte : http://www.maison-et-sante.com/la-peinture/ 



14.2 Etude de cas 

1) Cycle de vie: définition des conditions auxquelles sera soumis le produit : 

- la formation / la production, 

- le transport / le stockage, 

- le mélange, 

- l’application / le séchage. 

2) Cahier des charges, critères de performance et propriétés désirées : 

- une bonne dispersion des pigments, 

- pas de coagulation Þ un mélange aisé, 

- une sédimentation lente, 

- une viscosité basse à l'application Þ la présence de surfaces lisses, 

- une viscosité élevée après l'application Þ pas de coulée. 

3) Il faut traduire ses renseignements en termes rhéologiques. On veut donc : 

- une suspension stable, 

- une concentration de pigments selon l'opacité désirée, 

- une viscosité adaptée au mélange, 

- une pseudoplasticité prononcée, 

- une suspension élastique, 

- un mélange thixotropique, 

- un temps de relaxation suffisamment court pour un lissage de la surface. 

 

14.2 LE CHOCOLAT 

 

Le chocolat est constitué d’une phase continue, le beurre de cacao, et d’une phase dispersée 

solide composée de cacao, de sucre et de poudre de lait comme montré à la Figure 14.1.  

 

 
Figure 14.1. Microstructure du chocolat (a) et micrographie optique du chocolat au lait (b ; Chen & Mackley, Soft 
Matter 2005). 

This review briefly describes the basic microstructure of

chocolate and the behaviour of chocolate during and after cold

extrusion. In addition, the possible link between the mechani-

cal properties of the material and its microstructure is given.

1. Chocolate composition and microstructure

Chocolate is a complex material with physical characteristics

that can vary significantly within a relatively small temperature

range. At room temperature, chocolate is mainly in the

semi solid state. However by the time it reaches the body

temperature of 37 uC, the material is predominantly viscous

and can possess a low yield stress of approximately 10–20 Pa.

Chocolate can be variously described as a soft solid, a

concentrated suspension or a paste. Chocolate consists of a

high concentration (50–60% by vol.) of suspended solid

particles, which comprise mostly of sugar crystals, cocoa

and milk solids and these are dispersed in a continuous fat

matrix made of cocoa butter and milk fats (Fig. 1). Another

ingredient commonly found in commercial chocolate is an

emulsifier, usually soya lecithin, which is added to promote the

coating of the hydrophilic sugar particles with the hydrophobic

fat molecules. Cocoa butter is an essential ingredient in

chocolate and this component is mainly responsible for the

rheological properties of the material, in both the molten and

the solid form. One reason for the complexity of chocolate is

due to the polymorphic nature of the primary fat constituent.

Cocoa butter is known to be capable of existing in various

crystalline forms and the standard ‘Wille and Lutton’

polymorph numbering system (I–VI) describes the existence

of cocoa butter in six different crystalline configurations,

with an increase in thermal stability from forms I to VI.9

Alternatively the convention developed by Larsson10 can be

used to describe the different polymorphs and crystal packings

in cocoa butter. In practice, Form V crystals are the most

desirable crystal forms of cocoa butter as they provide good

demoulding properties and give the final chocolate products a

stable glossy finish as well as a pleasant texture. In order to

ensure the formation of crystals of the right polymorph V,

good tempering,11 a procedure involving a series of careful

temperature controlled steps, is therefore needed. Failure to do

so can result in a product that is more susceptible to fat bloom,

a physical imperfection that often manifests itself as a white or

greyish white layer on the surface of the chocolate product

during storage. Fat bloom occurs when a lower and unstable

crystal form of cocoa butter changes into a higher and more

stable form such as Form VI.

Cocoa butter is composed mainly of triacylglycerols (TAGs)

or triglycerides, which are found in most natural oils and

fats. TAGs are esters of three fatty acid molecules joined to

a glycerol molecule backbone (Fig. 2). The physical and

chemical properties of oils and fats are determined by the

composition and crystal packing arrangements of the trigly-

cerides. Palmitic (P), stearic (S) and oleic (O) fatty acids, which

make up more than 95% (Table 1) of the fatty acids found in

cocoa butter,11 combine to form the three main triglycerides

POP, SOS and POS (Fig. 2b).

It has been proposed that a certain degree of molecular

ordering still exists among the triglygeride molecules of the

most stable form just above the melting point of the cocoa

butter, usually above 40 uC.12 The chains adopt a chair-like

structure which is distorted.13 However the actual structural

arrangement of the triglycerides is not yet fully understood and

is still a subject of much debate. Figs. 3a and b show, highly

schematically, the arrangement of triglyceride molecules in

both the solid and the liquid states.

Most of the melting of cocoa butter occurs over a relatively

wide temperature range of between 15 uC and 40 uC (Fig. 4).

At 20 uC, about 16% of the triglyceride fats are in the liquid

form, hence the semi-solid state of cocoa butter and chocolate

at room temperature. Temperatures above 40 uC will result in

cocoa butter being predominantly in the molten state. Previous

work has proposed that fat crystals and aggregates form a

three dimensional network made of interlinked chains and

between these solid crystal regions, pools of liquid regions are

entrapped.14

Fig. 1 (a). Schematic representation of the microstructure of

chocolate. (b) An optical microscope image of a typical milk chocolate

recipe.

Fig. 2 (a) Basic structure of a triglyceride molecule with a glycerol

backbone connected to three fatty acids. (b) Structure of triglyceride

POS with the three main fatty acids.

Table 1 A typical composition of the three main fatty acids in cocoa
butter (ref. 11)

Fatty acid Chemical formula
Cocoa butter
(%) by wt

Palmitic acid (P) CH3(CH2)14COOH 26.0
Oleic acid (O) CH3(CH2)7CHLCH(CH2)7COOH 34.8
Stearic acid (S) CH3(CH2)16COOH 34.4

This journal is ! The Royal Society of Chemistry 2006 Soft Matter, 2006, 2, 304–309 | 305
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 Rhéologie 14.3 

A une température supérieure à 35°C, le beurre de cacao est à l’état fondu et le chocolat peut 

être considéré comme une suspension concentrée. La quantité des composants solides varie 

entre 65 et 73% en poids. Les différents ingrédients solides diffèrent en concentration, en taille 

des particules, en forme et en propriétés de surface. De ce fait, on ne peut pas considérer la 

phase dispersée solide comme une phase uniforme. L’intervalle désiré de la distribution de taille 

des particules se situe entre 15 et 25 µm. A cause du broyage lors de la mise en œuvre du 

chocolat, des particules fines avec des tailles inférieures à 0.1 µm sont aussi présentes. 

 

Les propriétés rhéologiques du chocolat sont contrôlées par l’ajustement de différents 

paramètres comme la concentration des composants solides, la taille des particules, le procédé 

de fabrication, la quantité finale d’eau (0.5% à 1.2%) et l’ajout d’ingrédients de surface active 

(lécithine). Ainsi la viscosité augmente avec le diamètre des particules de cacao et diminue avec 

celui du sucre (car l’un est hydrophobe et l’autre hydrophile). La lécithine réduit les valeurs de 

la viscosité, car elle forme un revêtement lubrifiant sur les particules (spécialement celles de 

sucre) et remplit les aspérités de surface. 

 

A l’état fondu, la phase continue (beurre de cacao) montre un comportement newtonien à des 

températures au-dessus de 37°C. Sur toute la plage de température de 28°C à 100°C, la viscosité 

du beurre de cacao dans l’état non-cristallin obéit à la relation exponentielle de Frenkel – 

Eyring : 

 

   (14.1) 

 

où T est la température absolue. 

 

L’incorporation de la phase dispersée dans le beurre de cacao entraîne des changements dans 

la viscosité et l’apparition d’un seuil d’écoulement (t0). Ce seuil d’écoulement peut être 

déterminé par des mesures directes ou par l’extrapolation des mesures rhéologiques par 

l’équation de Casson. En effet, en général, le chocolat suit la relation de Casson : 

 

   (14.2) 

 

η = 5.7 ⋅10−7 exp 3533.7
T

⎧
⎨
⎩

⎫
⎬
⎭

τ = τ 0 + ηCa !γ
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où hCa est la viscosité de Casson. Cependant, l’équation de Casson surestime le seuil 

d’écoulement comme le montre la Figure 14.2. Malgré tout, cette expression modélise bien le 

comportement du chocolat à des taux de cisaillement supérieurs à 1 s-1. 

 

 
Figure 14.2. Représentation du comportement du chocolat et de l’équation de Casson. 

 

Le seuil d’écoulement apparent ne peut pas être défini avec précision, car la microstructure du 

chocolat se désagrège en deux étapes décrites à la Figure 14.3 : 

 

- rupture des contacts entre particules et formation d’agrégats, 

- rupture des agrégats. 

 

 
Figure 14.3. Illustration des deux étapes de désagrégation de la microstructure du chocolat. 

 

La microstructure et la rhéologie sont bien évidemment liées. Le cisaillement casse les agrégats 

et diminue la viscosité. Les tests ne se font pas à microstructure constante et les phénomènes 

observés ne sont pas réversibles. La rhéologie peut donc servir à estimer la microstructure. 

 

14.3 LE FROMAGE 

 

Le lait est une émulsion lipides - eau. Pour produire du fromage à partir de cette matière 

première, il faut que des réactions chimiques aient lieu. Au fur et à mesure de la transformation, 

les propriétés mécaniques se modifient. La viscosité, puis la rigidité évoluent avec la 
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Figure 14.1 Représentation du comportement du chocolat et de 
l’équation de Casson. 

 

Le seuil d’écoulement apparent ne peut pas être défini avec précision, car la microstructure 
du chocolat se désagrège en deux étapes: 

-  rupture des contacts entre particules et formation d’agrégats, 

-  rupture des agrégats. 

 

Cette désagrégation est décrite à la figure 14.2. 
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Figure 14.2 Illustration des deux étapes de désagrégation de la 

microstructure du chocolat. 

 

La microstructure et la rhéologie sont liées. Le cisaillement casse les agrégats et diminue la 
viscosité. Les tests ne se font pas à microstructure constante et les phénomènes observés ne 
sont pas réversibles. La rhéologie peut donc servir à estimer la microstructure. 
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Figure 14.2 Illustration des deux étapes de désagrégation de la 

microstructure du chocolat. 

 

La microstructure et la rhéologie sont liées. Le cisaillement casse les agrégats et diminue la 
viscosité. Les tests ne se font pas à microstructure constante et les phénomènes observés ne 
sont pas réversibles. La rhéologie peut donc servir à estimer la microstructure. 
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microstructure du fromage schématisée à la Figure 14.4. Les étapes de la fabrication du fromage 

sont les suivantes : 

 

- Ajout de bactéries au lait. Cela initie le développement de l'acidité (et définit plus tard le 

goût). L'acidité favorise légèrement la floculation de la caséine du lait et l'agrégation des 

globules de matière grasse. 

- Ajout d’enzymes. Celles-ci attaquent la caséine et causent leur coagulation pour former 

un caillot. La formation d'une structure continue donne au fromage sa rigidité, après 

l'expulsion de l'eau (petit-lait). 

 

La caséine est une structure "spongieuse", déformable, et son volume effectif pour les calculs 

de viscosité est supérieur de deux à quatre fois au volume réel occupé par les micelles elles-

mêmes, car il y a emprisonnement du solvant (solvatation). 

 

 
Figure 14.4. Schématisation de la structure des fromages à différentes échelles (Huc thèse 2013). 

 

La structure du fromage suggère que le modèle de Kelvin ou le modèle standard linéaire puisse 

être utilisé. Une caractérisation de la viscosité devrait permettre un suivi de l'évolution 

structurale et mener à une automatisation du procédé de fabrication et à des contrôles de qualité. 

La Figure 14.5 décrit la viscosité en fonction du temps. L’accroissement de la viscosité est 

soudain et très prononcé. 

 

14 
 

nutritionnel (protéines, matière grasse, etc) ou en lien avec la nucléation (présence de nucléi 

« naturels » et non technologiquement maîtrisés). Les principales souches bactériennes 

caractérisant les fromages « Swiss-type » sont décrites plus avant au chapitre 1.4.1. 

Cependant, le lait apporte également au fromage tous ses constituants, qui vont subir des 

traitements thermo-mécaniques lors des étapes de fabrication décrites précédemment (chapitre 

1.2) et former la structure de la pâte fromagère. Le terme « structure » recouvre de 

nombreuses échelles, allant du micro au macro-domaine d’observation, comme le montre la 

Figure 1. Ainsi, la pâte fromagère peut être décrite comme une matrice composée d’un réseau 

protéique branché avec des agrégats plus ou moins gonflés (échelle du nm au µm), au sein 

duquel sont dispersés des globules de matière grasse (de l’ordre de 1µm) agissant comme 

éléments de remplissage inertes (Rohm & Lederer, 1992). Cette matrice est en équilibre avec 

une phase liquide, siège du développement microbiologique. Des colonies de diverses souches 

bactériennes (de l’ordre de 1 à 10µm) sont aussi présentes au sein des fromages. Enfin, à une 

échelle supérieure, ce réseau peut aussi être décrit comme un assemblage de grains de caillé 

(de l’ordre de 1mm), contenant des bulles de taille et de nombre variables (de l’ordre du cm). 

 

Figure 1 : Schématisation de la structure des fromages à différentes échelles, grossissement du moins (-) au plus (+) fin 

Par conséquent, de nombreuses études ont été menées dans la littérature avec pour but 

d’étudier l’évolution de la structure de la pâte fromagère au cours de l’affinage et/ou des 

étapes de fabrication précédentes. Trois techniques sont plus particulièrement développées à 

ces fins dans la littérature : microscopie optique/photographie, confocale et électronique, 
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Figure 14.5. Evolution de la viscosité du fromage lors de sa fabrication. 

 

Les propriétés changent dans le temps parce qu'il y a formation de grumeaux, ainsi :  

 

- le choix de la taille de l'échantillon doit être judicieux, 

- les temps de mesure doivent être courts, 

- l'essai ne doit pas rompre la microstructure, ni interrompre les réactions chimiques et 

ainsi fausser la mesure de la viscosité. 

 

Une viscosité trop faible est mesurée si l'essai est réalisé à une vitesse ou à une amplitude de 

cisaillement trop élevée, par suite d'une rupture de la structure du fromage. Une méthode de 

mesure de la viscosité est celle de la propagation d’ondes. En effet, l’atténuation est une 

fonction du taux de solidification. Le fromage solide a un comportement viscoélastique à des 

cisaillements g petits, puis un comportement plastique comme l’esquisse la Figure 14.6. 

 

 
Figure 14.6. Représentation de la contrainte en fonction du temps. 

 

14.4 L'HEMORHEOLOGIE 

 

L’hémorhéologie est la rhéologie du sang. Elle est très complexe et dépend de beaucoup de 

facteurs. Le sang est une suspension dont le plasma est le solvant (newtonien) et les cellules 

(globules rouges, globules blancs et plaquettes sanguines) compose la phase dispersée solide. 

La composition du sang est montrée à la Figure 14.7. 
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Figure 14.3 Evolution de la viscosité du fromage lors de sa 
fabrication. 

 

Les propriétés changent dans le temps parce qu'il y a formation de grumeaux, ainsi:  

-  le choix de la taille de l'échantillon doit être judicieux, 

-  les temps de mesure doivent être court, 

-  l'essai ne doit pas rompre la microstructure, ni interrompre les réactions chimiques 
et ainsi fausser la mesure de la viscosité. 

 

Une viscosité trop faible est mesurée si l'essai est réalisé à une vitesse ou à une amplitude 
de cisaillement trop élevée, par suite d'une rupture de la structure du fromage. Une méthode 
de mesure de la viscosité est celle de la propagation d’ondes. En effet, l’atténuation est une 
fonction du taux de solidification. 

 

Le fromage solide a un comportement viscoélastique à des cisaillements γ petits, puis un 
comportement plastique comme l’esquisse la figure 14.4. 
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Figure 14.4 Représentation de la contrainte en fonction du temps. 
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de cisaillement trop élevée, par suite d'une rupture de la structure du fromage. Une méthode 
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fonction du taux de solidification. 
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t

�

rupture

� = constant

 

Figure 14.4 Représentation de la contrainte en fonction du temps. 
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Figure 14.7. Composition du sang [http://www.dondusang-doubs.org]. 

 

Le plasma est le liquide qui tient en suspension les globules et permet leurs déplacements. Il 

représente environ 60% de la masse totale du sang, les 40% restants représentent la masse des 

globules rouges, des globules blancs et les plaquettes sanguines. Il est essentiellement constitué 

d’eau, dans laquelle se trouvent en solution des sels minéraux, du sucre, des protéines et 

diverses substances (hormones, vitamines, etc.) en très petite quantité. 

 

Les globules rouges sont aussi appelés hématies ou érythrocytes. Ces cellules ne possèdent pas 

de noyau et ont la forme d’un disque, renflé sur les bords, aminci au centre. Leur diamètre est 

d’environ 8 µm et leur épaisseur 2 µm. Leur nombre normal varient entre 4.5 et 5 millions par 

mm3 de sang. La surface totale des globules rouges d’un être humain représente environ 200 m2. 

L’hématocrite (H) caractérise la quantité de globules rouges dans le sang. 

 

La viscosité dépend de la viscosité du plasma, de la concentration de protéines dans le plasma, 

de la fraction volumique des globules rouges, des globules blancs et des plaques, de la 

concentration de diverses substances (hormones, protéines, etc…), de l’agrégation des globules 

rouges, de leur déformabilité, du diamètre du canal, etc… 

 

Le comportement du sang est décrit par le modèle de Carreau. Sa rhéologie est déterminée par 

la complexité de la composition et les nombreuses interactions entre les particules qui créent 

un seuil d’écoulement. La viscosité en fonction de la vitesse de cisaillement à divers taux 

d’hématocrite, est représentée à la Figure 14.8. Le plasma pur est un liquide newtonien. 
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Figure 14.8. Evolution de la viscosité en fonction de la vitesse de cisaillement à divers taux d’hématocrite. 

 

La structure et la géométrie caractéristique des globules rouges sont modifiées par l'écoulement. 

Cette déformation nécessite très peu d'énergie à cause de leur géométrie. Cette géométrie, qui 

dépend de la vitesse de cisaillement, est représentée schématiquement à la Figure 14.9. 

 

 
Figure 14.9. Evolution de la géométrie des globules rouges avec l’augmentation de la vitesse de cisaillement. 

 

Les globules rouges migrent vers le centre des vaisseaux pendant l’écoulement. Il faut donc 

faire attention lors des mesures, car la zone riche en plasma près des parois fausse la mesure de 

la viscosité. Ceci est décrit à la Figure 14.10. 

 

 
Figure 14.10. Représentation de l’écoulement du sang au travers d’un vaisseau. 

 

La compréhension physiologique et chimique de l'hémorhéologie conduit à de nombreuses 

applications. La rhéologie du sang est un indicateur physiologique. Une hémorhéologie 
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14.4 L'HEMORHEOLOGIE 

L’hémorhéologie est la rhéologie du sang. Elle est très complexe et dépend de beaucoup de 
facteurs. Le sang est une suspension dont le plasma est le solvant (newtonien) et les cellules 
(globules rouges, globules blancs et plaquettes sanguines) compose la phase dispersée solide. 

 

Le plasma est le liquide qui tient en suspension les globules et permet leurs déplacements. 
Il représente environ 60% de la masse totale du sang, les 40% restants représentent la masse 
des globules rouges, des globules blancs et les plaquettes sanguines. Il est essentiellement 
constitué d’eau, dans laquelle se trouvent en solution des sels minéraux, du sucre, des 
protéines et diverses substances (hormones, vitamines, etc.) en très petite quantité. 

 

Les globules rouges sont aussi appelés hématies ou érythrocytes. Ces cellules ne possèdent 
pas de noyau et ont la forme d’un disque, renflé sur les bords, aminci au centre. Leur diamètre 
est d’environ 8 µm et leur épaisseur 2 µm. Leur nombre normal varient entre 4.5 et 5 millions 
par mm3 de sang. La surface totale des globules rouges d’un être humain représente environ 
200 m2. L’hématocrite (H) caractérise la quantité de globules rouges dans le sang. 

 

La viscosité dépend de la viscosité du plasma, de la concentration de protéines dans le 
plasma, de la fraction volumique des globules rouges, des globules blancs et des plaques, de 
la concentration de diverses substances (hormones, protéines, etc…), de l’agrégation des 
globules rouges, de leur déformabilité, du diamètre du canal, etc… 

 

Le comportement du sang est décrit par le modèle de Carreau. Sa rhéologie est déterminée 
par la complexité de la composition et les nombreuses interactions entre les particules qui 
créent un seuil d’écoulement. La viscosité en fonction de la vitesse de cisaillement à divers 
taux d’hématocrite, est représentée à la figure 14.5. Le plasma pur est un liquide newtonien. 
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Figure 14.5 Evolution de la viscosité en fonction de la vitesse de 

cisaillement à divers taux d’hématocrite. 
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La structure et la géométrie caractéristique des globules rouges sont modifiées par 
l'écoulement. Cette déformation nécessite très peu d'énergie à cause de leur géométrie. Cette 
géométrie, qui dépend de la vitesse de cisaillement, est représentée schématiquement à la 
figure 14.6. 
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Figure 14.6 Evolution de la géométrie des globules rouges avec 
l’augmentation de la vitesse de cisaillement. 

Les globules rouges migrent vers le centre des vaisseaux pendant l’écoulement. Il faut 
donc faire attention lors des mesures, car la zone riche en plasma près des parois fausse la 
mesure de la viscosité. Ceci est décrit à la figure 14.7. 

 

 

Figure 14.7 Représentation de l’écoulement du sang au travers d’un 
vaisseau. 

La compréhension physiologique et chimique de l'hémorhéologie conduit à de nombreuses 
applications. La rhéologie du sang est un indicateur physiologique. Une hémorhéologie 
anormale, en particulier une viscosité élevée, indique une pathologie: diabète, hypertension, 
anémie (défaut de cellules). 

Il y a trois cas principaux de relations entre la rhéologie et certains phénomènes chimiques: 

-  η élevé à ˙ γ  faible: agrégation,      
 η élevé à ˙ γ  élevé: déformabilité réduite des globules rouges, 

-  caractéristiques de coagulation, 

-  caractéristiques de sédimentation des globules rouges. 
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anormale, en particulier une viscosité élevée, indique une pathologie : diabète, hypertension, 

anémie (défaut de cellules). 

 

Il y a trois cas principaux de relations entre la rhéologie et certains phénomènes chimiques : 

 
- h élevé à !̇ faible : agrégation, 

h élevé à !̇ élevé : déformabilité réduite des globules rouges, 

- caractéristiques de coagulation, 

- caractéristiques de sédimentation des globules rouges. 

 

14.5 BIORHEOLOGIE CELLULAIRE 

 

La cellule typique est composée essentiellement de trois éléments : une masse de cytoplasme, 

entourée d’une membrane cellulaire et contenant un noyau comme décrit à la Figure 14.11. 

Chacun de ces trois éléments possède, en lui-même, une structure fort complexe. La dimension 

des cellules varie considérablement. L’ordre de grandeur de la grande majorité des cellules 

d’animaux pluricellulaires est de 20 à 40 µm. 

 

Le cytoplasme est la masse de substance vivante comprise à l’intérieur de la membrane, à 

l’exclusion du noyau. Il est formé d’une substance de base, le hyaloplasme, dans laquelle 

baignent différents objets parmi lesquels se trouvent les mitochondries, le réticulum 

endoplasmique, les lyposomes ainsi que d’autres corpuscules et granulations. Le hyaloplasme 

est riche en eau et en substances dissoutes dans l’eau, parmi lesquelles se trouvent notamment 

des protéines, des sels, des glucides. 

 
L'étude des cellules est délicate, parce que l'interaction entre corpuscules affecte leur évolution 

dans le milieu cellulaire. 

 

 
Figure 14.10. Représentation schématique d’une cellule. 
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La cellule typique est composée essentiellement de trois éléments: une masse de 
cytoplasme, entourée d’une membrane cellulaire et contenant un noyau. Chacun de ces trois 
éléments possède, en lui-même, une structure fort complexe. La dimension des cellules varie 
considérablement. L’ordre de grandeur de la grande majorité des cellules d’animaux 
pluricellulaires est de 20 à 40 µm. 

 

Le cytoplasme est la masse de substance vivante comprise à l’intérieur de la membrane, à 
l’exclusion du noyau. Il est formé d’une substance de base, le hyaloplasme, dans laquelle 
baignent différents objets parmi lesquels se trouvent les mitochondries, le réticulum 
endoplasmique, les lyposomes ainsi que d’autres corpuscules et granulations. Le hyaloplasme 
est riche en eau et en substances dissoutes dans l’eau, parmi lesquelles se trouvent notamment 
des protéines, des sels, des glucides. 

 

L'étude des cellules est délicate, parce que l'interaction entre corpuscules affecte leur 
évolution dans le milieu cellulaire. Un exemple de cellule est décrit à la figure 14.8. 
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Figure 14.8 Représentation schématique d’une cellule. 

Il faut noter que le cytoplasme coagule hors de la membrane cellulaire, ce qui nécessite 
une étude in-vitro et complique encore plus l’étude de la cellule. 

 

Deux approches sont possibles pour déterminer la viscosité des cellules. La première 
consiste en l’introduction de particules de fer ou de nickel. On applique un champ magnétique 
et la viscosité est calculée à partir de la vitesse de déplacement de ces particules. Les relations 
utilisées sont: 

 η = f (M ou F, dx
dt

)  et  F = 6πηd
dx
dt

 (formule de Stokes) 

où d est le diamètre de la particule. 
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Il faut noter que le cytoplasme coagule hors de la membrane cellulaire, ce qui nécessite une 

étude in-vitro et complique encore plus l’étude de la cellule. 

 

Deux approches sont possibles pour déterminer la viscosité des cellules. La première consiste 

en l’introduction de particules de fer ou de nickel. On applique un champ magnétique et la 

viscosité est calculée à partir de la vitesse de déplacement de ces particules. Les relations 

utilisées sont : 

 

  (14.3) 

 

où la force F est donnée par la formule de Stokes et d est le diamètre de la particule de métal. 

La deuxième approche est une centrifugation des particules (corpuscules) vers un côté de la 

cellule, le retour des corpuscules se faisant alors par mouvements Browniens. Ces mouvements 

suivent la loi de diffusion : 

 

   (14.4) 

 

où Dx est la distance parcourue en un temps t à la température T. La viscosité du cytoplasme est 

pour sa part reliée à la viscosité du hyaloplasme par la relation : 

 

   (14.5) 

 

La biorhéologie a encore beaucoup d’autres applications pathologiques et physiologiques. 

L’étude de la salive se révèle très intéressante. Le poids moléculaire de la salive est fonction de 

l’état de santé du patient. L’étude du mucus permet d’apprécier les effets des bactéries et des 

hormones. 

 

 

    

 

η = f M ou F; dx
dt

⎛
⎝⎜

⎞
⎠⎟ et F = 6πηd dx

dt

Dx = 14.7 ⋅10
−18 Tt

ηd

ηcytoplasme =  4.5ηhyaloplasme
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15 PHENOMENES 
 

Ce Chapitre illustre la diversité des phénomènes observés lors de l’écoulement de liquides 

viscoélastiques, sur la base d’observations reportées dans la littérature. 

 

15.1 EFFET WEISSENBERG 

 

La Figure 15.1 décrit l’effet Weissenberg. Un bâton tourne dans un récipient contenant un 

liquide viscoélastique. Lorsque le bâton tourne, le liquide monte le long du bâton tandis qu’un 

liquide newtonien se collerait contre la paroi sous l’effet des forces d’inertie. 

 

 
Figure 15.1. Illustration de l’effet Weissenberg. Le polymère est un polyisobutylène à haut poids moléculaire dans 
un solvant à bas poids moléculaire de même nature (reproduit de H.A. Barnes, J.F. Hutton and K. Walters, An 
Introduction to Rheology, Elsevier, 1989, avec la permission de Elsevier Science). 
 



15.2 Phénomènes 

Les changements de la surface libre d’un additif pour huile STP (motor oil additive) à proximité 

d’un bâton tournant à différentes vitesses de rotation sont représentés à la Figure 15.2. Lorsque 

le bâton ne tourne pas, la montée est uniquement due à la tension de surface. A une vitesse de 

rotation d’environ 3 tours/min le liquide commence à monter le long du bâton. La forme 

initialement concave tend lentement vers une forme légèrement convexe. La configuration 

finale, stationnaire de la goutte montante est montrée sur la figure en (h). La goutte semble 

rejoindre la surface plane du liquide en un point de discontinuité. Un examen détaillé révèle un 

col avec un très faible rayon. 

 

 
 

Figure 15.2. Illustration des changements de la surface libre d’un additif pour huile STP (motor oil additive) près 
d’un bâton tournant à différentes vitesses de rotation (a) 1 tours/min, (b) 2.0 tours/min, (c) 2.5 tours/min, (d) 3.0 
tours/min, (e) 4.6 tours/min, (f) 5.5 tours/min, (g) 7.0 tours/min, (h) 8.5 tours/min (instable). (Reproduit de J. Fluid 
Mechanics, G.S. Beavers and P.D. Joseph, 69, 1975, 475, avec la permission de Elsevier Science). 
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15.2 GONFLEMENT DE FILIERE (DIE SWELL) 

 

Le phénomène de gonflement de filière se produit lorsqu’un fluide sort d’une filière d’extrusion 

dans un milieu neutre. On considère deux cas présentés à la Figure 15.3 où le liquide extrudé 

est un fluide newtonien (h = 11.6 Pa×s, Re = 10-3) et le second où le fluide est non-newtonien 

(h = 11.4 Pa×s, Re = 0.0009, We = 0.272). 

 

     
Figure 15.3. Illustration du gonflement à la sortie d’une filière pour un liquide newtonien (à gauche) et non-
newtonien (à droite ; reproduit de D.V. Boger, K. Walters, Rheological Phenomena in Focus, Elsevier, 1993, p. 
21, avec la permission de Elsevier Science). 
 

Le même phénomène apparaît avec un canal de sortie plus étroit. Soit un milieu inerte constitué 

de 5% de solution aqueuse de polyacrylate : dès lors le gonflement de filière selon le flux est 

représenté à la Figure 15.4, où la partie (a) montre un écoulement normal (faible flux), la partie 

(b) un flux modéré et la partie (c) un flux élevé. 

 

 
  (a) (b) (c) 

Figure 15.4. Phénomène de gonflement à la sortie d’une filière où (a) montre un écoulement normal (faible flux), 
(b) un flux modéré et (c) un flux élevé reproduit de Rheologica Acta, H. Giesekus, 8, 1968, 411, avec la permission 
de Elsevier Science). 



15.4 Phénomènes 

Le nombre de Reynolds, Re, augmente avec le flux. Le conflit entre l’inertie du fluide et son 

élasticité apparaît. Le phénomène de gonflement est non seulement retardé par l’inertie du 

liquide, mais aussi diminué. Un tel gonflement peut s’expliquer facilement au premier abord. 

La Figure 15.5 donne à elle seule la principale cause de ce gonflement. 

 

 
Figure 15.5. Explication graphique du phénomène de gonflement à la sortie d’une filière. 

 

On introduit un rapport de diamètre (die swell) qui caractérise le gonflement de filière. Il s’agit 

du rapport du diamètre du gonflement par le diamètre du tube. On dénombre plusieurs relations 

de causes à effets, dont : 

 

- L/R augmente Þ    Re augmente Þ    Die swell diminue, 

- uluide diminue Þ    De diminue Þ    Die swell diminue, 

- T augmente Þ    Force élastique diminue Þ    Die swell diminue. 

 

où L est la longueur de la filière, R son rayon, ufluide la vitesse du fluide traversant la filière, Re le 

nombre de Reynolds et De le nombre de Deborah. Il y a une relation entre la vitesse de 

cisaillement et le die swell. Cette relation est décrite à la Figure 15.6. 

 

 
Figure 15.6. Relation entre la viscosité, le die swell et la vitesse de cisaillement. 

 

15.4 Phénomènes 

 
 (a) (b) (c) 

Figure 15.5 Phénomène de gonflement à la sortie d’une filière où (a) montre un 
écoulement normal (faible flux), (b) un flux modéré et (c) un flux 
élevé. (Reprinted from Rheologica Acta, H. Giesekus, 8, 1968, 
411, with permission from Elsevier Science). 

 

 

Le nombre de Reynolds (Re) augmente avec le flux. Le conflit entre l’inertie du fluide et 
son élasticité apparaît. Le phénomène de gonflage est non seulement retardé par l’inertie du 
liquide, mais aussi diminué. 

 

 

Un tel gonflement peut s’expliquer facilement au premier abord. La figure 15.6 donne à 
elle seule la principale cause de ce gonflement. 
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Figure 15.6 Explication graphique du phénomène de gonflement à la 
sortie d’une filière. 
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On introduit un rapport de diamètre (Die swell) qui caractérise le gonflement de filière. Il 
s’agit du rapport du diamètre du gonflement par le diamètre du tube. On dénombre plusieurs 
relations de causes à effets, dont: 

 

 L/R augmente ⇒ Re augmente ⇒ Die swell diminue, 

 ufluide diminue ⇒ De diminue ⇒ Die swell diminue, 

 T augmente ⇒ Force élastique diminue ⇒ Die swell diminue. 

 

L est la longueur de la filière, R son rayon, ufluide la vitesse du fluide traversant la filière, Re 
le nombre de Reynolds et De le nombre de Deborah. Il y a une relation entre la vitesse de 
cisaillement et le Die swell. Cette relation est décrite à la figure 15.7. 
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Figure 15.7 Relation entre le Die swell et la vitesse de cisaillement. 
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15.3 VORTEX 

 

Le vortex est la frontière séparant le fluide qui va pénétrer dans le tube de plus faible diamètre 

et le fluide secondaire, bloqué par les bords. L’élément de base d'un flux passant abruptement 

d’un tube large dans un tube de plus faible diamètre est décrit à la Figure 15.7. 

 

 
Figure 15.7. Représentation schématique du vortex reproduit de D.V. Boger, K. Walters, Rheological Phenomena 
in Focus, Elsevier, 1993, p. 36, avec la permission de Elsevier Science). 
 

Il est possible de déduire mathématiquement l’écoulement d’un fluide, ce qui ne sera toutefois 

pas traité dans ce cours. On se contentera d’observer ce qui se passe : les photos de la Figure 

15.8 décrivent une solution aqueuse de 0.04% polyamide et sirop de glucose qui s’écoule dans 

un tube avec diverses conditions. 

 

 
 

 = 1.1 s-1  

Re = 5.7 10-4  
We = 0.079 

 = 3.4 s-1  

Re = 1.76 10-3  
We = 0.12 

 = 9.3 s-1  

Re = 4.8 10-3  
We = 0.179 

 = 24.2 s-1  

Re = 1.25 10-2  
We = 0.204 

 
Figure 15.8. Illustration du Vortex d’une solution aqueuse de 0.04% polyamide et sirop de glucose qui s’écoule 
dans un tube avec diverses conditions (reproduit de J. Non-Newtonian Fluid Mechanics, D.V. Boger, D.U. Hur 
and R.J. Binnington, 20, 1986, 31, avec la permission de Elsevier Science). 



15.6 Phénomènes 

La géométrie du flux est dictée par le matériau qui s’écoule, la géométrie du tube et celle des 

bords de l’entrée. Soit une solution aqueuse de 0.03% Separan MG55 et sirop de glucose, 

appelée liquide de Boger, qui s’écoule dans un tube. Les conditions physiques sont : 

 

- !̇	= 8.3 s-1 

- Re = 2.9 10-3 

- We = 0.0169 

 

Les photos de la Figure 15.9 décrivent deux écoulements différents, car les bords d’entrée sont 

différents. Sur la figure (a), on a des bords vifs et sur la figure (b) des bords arrondis avec un 

rayon de 2 mm pour un diamètre de 5.5 mm du tube d’arrivée. La contraction est de 4:1. Les 

lignes d’écoulement illustrent la sensibilité du champ d’écoulement à la géométrie du bord 

d’entrée. En regardant ces photos, on vérifie la pertinence de la correction de Bagley. 

 

 
Figure 15.9. Illustration du Vortex d’une solution aqueuse 0.03% Separan MG55 et sirop de glucose dans les 
mêmes conditions. Les bords d’entrée du tube sont vifs en (a) et arrondis en (b) (reproduit de D.V. Boger, K. 
Walters, Rheological Phenomena in Focus, Elsevier, 1993, p. 45, avec la permission de Elsevier Science). 
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15.4 JET LIQUIDE EN FORME D’ARBRE 

 

L’écoulement d'une solution de 3% de polyacrylamide à partir d’un trou circulaire de 1 mm de 

diamètre dans un récipient qui contient le même liquide thixotropique élastique a un 

comportement différent selon le débit. A des débits modérés on observe un comportement quasi 

newtonien. A des débits plus importants un flux en forme d’arbre est observé. Un jet concentré, 

qui ne s’agrandit pas sensiblement avec la distance, est émis par le trou circulaire jusqu’à ce 

que le jet éclate de telle manière que les lignes d’écoulement semblent se séparer comme les 

branches d’un arbre. Ce phénomène est représenté à la figure 15.11. 

 

 
 
Figure 15.10. Illustration d’un jet de liquide en forme d’arbre d’une solution de 3% de polyacrylamide à partir 
d’un trou circulaire de 1 mm de diamètre dans un récipient qui contient le même liquide thixotropique élastique. 
Pour que le phénomène apparaisse, il faut un haut débit (reproduit de Rheologica Acta, H. Giesekus, 8, 1969, 411, 
avec la permission de Elsevier Science). 
 

  



15.8 Phénomènes 

15.5 FLUX RADIAL DANS UNE CELLULE HELE-SHAW 

 

Ce phénomène est observé dans le cas de l’injection d’un liquide dans un autre entre deux 

plaques parallèles séparées par une très faible distance dont l’une est percée d’un trou en son 

centre. On injecte un premier liquide par ce trou puis un deuxième qui repousse le premier. La 

Figure 15.11 reproduit le type d’effet observé, le premier liquide étant transparent et le second 

opaque. A la figure (a) un fluide newtonien déplace une solution thixotropique et élastique de 

polyacrylamide (rapport de viscosité 103). La figure (b) montre un fluide newtonien déplaçant 

une solution thixotropique et élastique de polyacrylamide (rapport de viscosité 105). La figure 

(c) illustre un fluide newtonien déplaçant un fluide newtonien (rapport de viscosité 10). La 

figure (d) représente un fluide de type Boger déplaçant un fluide newtonien (rapport de viscosité 

10). 

 

 
  (a) (b) 

 
  (c) (d) 

Figure 15.11. Illustration d’un flux radial dans une cellule Hele-Shaw. Il s’agit d’injecter successivement par le 
centre de l’une des deux plaques parallèles deux liquides (le premier est transparent, le second opaque). (a) une 
solution thixotropique et élastique de polyacrylamide (premier liquide) - un fluide newtonien (second liquide) 
(rapport de viscosité 1’000); (b) une solution thixotropique et élastique de polyacrylamide - un fluide newtonien 
(rapport de viscosité 100’000); (c) un fluide newtonien - un fluide newtonien (rapport de viscosité 10) et (d) un 
fluide newtonien - un fluide de type Boger (rapport de viscosité 10) (reproduit de la Society of Petrolum Engineers, 
E. Allen and D.V. Boger, Paper No 18097, 63rd Annual Technical Conference and Exhibition , Houston, USA, 
1988). 
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15.6 JET CAPILLAIRE AVEC UN NOMBRE DE REYNOLDS ELEVE 

 

La Figure 15.12 montre la forme d’un flux avec un nombre de Reynolds (Re) élevé à la sortie 

d’un trou de 6.53 mm de diamètre avec en (a) une solution aqueuse 50 ppm d’un oxyde de 

polyéthylène, et de l’eau en (b). On observe la formation rapide de turbulences en surface des 

deux liquides, la transition entre zone lisse et zone turbulente ayant lieu plus tôt dans le premier 

cas, et la formation de gouttelettes dispersées étant également fortement réduite.  

 
 

 
  (a) (b) 

Figure 15.12. Illustration d’un flux avec un nombre de Reynolds (Re) élevé à la sortie d’un trou de 6,53 mm de 
diamètre. En (a), il s’agit d’une solution aqueuse 50 ppm d’un oxyde de polyéthylène et en (b) d’eau (reproduit de 
Physics of Fluids, J.W. Hoyt and J.J. Taylor, 20, 1977, S253, avec la permission de Elsevier Science). 
 



15.10 Phénomènes 

La Figure 15.13 montre les mêmes jets capillaires que ceux de la Figure 15.12, cette fois ci à 

1 m de la sortie du trou. A nouveau l’apparence du jet diffère suivant la composition des 

liquides. On note que les gouttelettes dispersées pour l’eau sont éliminées par l’addition d’un 

polymère de haut poids moléculaire. La surface extérieure du jet avec du polymère est aussi 

beaucoup plus lisse. 

 

 
  (a) (b) 

Figure 15.13. Illustration d’un jet capillaire avec un nombre de Reynolds (Re) élevé à 1 m de la sortie d’un trou 
de 6.35 mm. Il s’agit d’un jet d’une solution aqueuse de 200 ppm PEO en (a) et d’un jet d’eau en (b) (reproduit de 
Physics of Fluids, J.W. Hoyt and J.J. Taylor, 20, 1977, S253, avec la permission de Elsevier Science). 
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LISTE DES SYMBOLES 

 

Cette liste contient les symboles qui ont été utilisés dans cet ouvrage. Seuls figurent les 

symboles qui ont une signification physique. On donne le symbole, sa définition, sa traduction 

anglaise, son unité et la page de sa première apparition. 

 

Romains 

 

a Coefficient du modèle de Ellis (Ellis model coefficient) [s] 7.5 

a Taille des particules (Particles size) [m] 12.5 

a Grand axe de l’ellipsoïde (Major ellipsoid axis) [m] 13.8 

aT Coefficient de translation (Shift factor) [-] 5.1 

ar Rapport des dimensions (Aspect ratio) [-] 13.8 

A Surface (Surface) [m2] 1.2 

A Constante de Hamacker (Hamacker’s constant) [J] 12.6 

ai,a’,A,A’     Constantes (Constants)  2.4 

 

b = 1/n Coefficient pour la correction de Rabinovitch  

 (Rabinovitch correction coefficient) [-] 9.4 

b,b’,bi,B    Constantes (Constants)  2.4 

b Largeur de la plaque (Plate width) [m] 10.13 

b Petit axe de l’ellipsoïde (Minor ellipsoid axis) [m] 13.8 

B Largeur de la conduite (Duct width) [m] 8.2 

 

cf Coefficient de frottement de peau (Skin friction coefficient) [-] 10.15 

c,C,C1,C2   Constantes (Constants)  2.8 

C1,C2 Coefficients du modèle WLF (WLF model coefficients) [-][°C] 7.13 

CD Coefficient de trainée adimensionnel  

 (Adimensional drag coefficient) [-] 10.16 

CF Coefficient de force adimensionnel  

 (Adimensional force coefficient) [-] 8.18 

Ci Coefficients de la série de Prony (Prony series coefficients) [-] 4.3 

CL Coefficient de portance adimensionnel  

 (Adimensional lift coefficient) [-] 10.16 



 Liste des symboles 2 

d Constante (Constant)  5.8 

d Dimension caractéristique de la géométrie d’écoulement  

 (Characteristic flow geometry dimension) [m] 1.17 

d Diamètre de la sphère ou de la fibre (Sphere or fiber diameter) [m] 12.6 

D Constante (Constant)  2.5 

D Coefficient de diffusion (Diffusion coefficient) [m2×s-1] 5.3 

D Diamètre de la conduite (Duct diameter) [m] 10.4 

De Nombre de Deborah (Deborah's number) [-] 1.18 

Dh Diamètre hydraulique équivalent (Equivalent hydraulic diameter) [m] 10.12 

Dx Distance de diffusion due aux mouvements browniens  

 (Diffusion distance due to Brownian movements) [m] 12.5 

   

e Facteur de correction de Bagley (Bagley's correction factor) [-] 9.2 

e Charge unitaire (Unit charge) [C] 12.8 

E Module de Young, module élastique (Young's modulus) [Pa] 1.2 

E Champ électrique (Electrical field) [V×m-1] 12.8 

E 
’ Module de conservation, module de stockage (Storage modulus) [Pa] 3.4 

E 
’’ Module de perte, module de friction interne (Loss modulus) [Pa] 3.5 

EI Module du ressort en série dans le modèle SLSM  

 (Elastic (spring) modulus) [Pa] 2.14 

EII Module du ressort en parallèle dans le modèle SLSM  

 (Elastic (spring) modulus) [Pa] 2.14 

E 
* Module complexe (Complex modulus) [Pa] 3.11 

Ea Energie d’activation (Activation energy) [J] 4.8 

EC Module de fluage (Creep modulus) [Pa] 1.3 

ER Module relaxé (Relaxed modulus) [Pa] 2.15 

EU Module non relaxé (Unrelaxed modulus) [Pa] 2.16 

E!̇ Energie pour une vitesse de cisaillement constante  

 (Energy for a constant shear rate) [J] 7.9 

Et Energie pour une contrainte de cisaillement constante  

 (Energy for a constant shear stress) [J] 7.9 

 

f Facteur de frottement (Friction factor) [-] 10.4 
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f Fraction de volume libre (Fraction of free volume) [-] 5.5 

fg Fraction de volume libre à la température de transition vitreuse  

 (Fraction of free volume, at the glass transition temperature) [-] 7.12 

F Force (Force) [N] 1.2 

Fdrag Force de trainée (Drag force) [N] 10.13 

FH Constante d’Henry (Henry’s constant) [-] 12.9 

 

g Accélération de la pesanteur (Gravitational acceleration) [m×s-2] 10.3 

gelTg Température pour laquelle les temps de gélation et de vitrification sont égaux 

(Temperature for which gelation and vitrification times are equal)    [K] 11.11 

G Module élastique de cisaillement (Shear modulus) [Pa] 1.1 

G 
’ Module de stockage en cisaillement (Shear storage modulus) [Pa] 9.10 

G 
’’ Module de perte en cisaillement (Shear loss modulus) [Pa] 9.10 

 

h,H Hauteur de la conduite (Duct height) [m] 8.2 

h Distance entre particules (Distance between particles) [m] 12.6 

hg Hauteur piézométrique (Piezometric height) [m] 10.3 

H Chaleur de réaction (Heat of reaction) [J] 11.3 

H(ts ) Spectre de temps de relaxation (Relaxation time spectrum) [-] 4.6 

 

j Nombre de dimensions (Number of dimensions) [-] 8.16 

J(t) Fonction de complaisance de fluage (Retardation function) [Pa-1] 1.12 

Jv(t) Partie visqueuse de la fonction de complaisance de fluage  

 (Viscous part of the retardation function) [Pa-1] 2.16 

Ju Complaisance non relaxée (Unrelaxed compliance) [Pa-1] 2.16 

JR Complaisance relaxée (Relaxed compliance) [Pa-1] 2.16 

J 
’ Complaisance de conservation (Storage compliance) [Pa-1] 3.7 

J 
’’ Complaisance de perte (Loss compliance) [Pa-1] 3.7 

J 
* Complaisance complexe (Complex compliance) [Pa-1] 3.11 

 

k Constante de Boltzmann (Boltzmann’s constant) [J×K-1] 4.8 

k Coefficient du modèle de Carreau-Yashuda 

  (Carreau-Yashuda model coefficient) [-] 7.4 
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ke Coefficient d’Einstein (Einstein’s coefficient) [-] 13.1 

ke Coefficient de Huggins (Huggin’s coefficient) [-] 13.2 

k0 Constante cinétique (Rate constant) [s-1] 11.4 

K Module volumique (Bulk modulus) [Pa] 1.11 

K Coefficient des modèles de Cross et de Ellis 

 (Cross and Ellis models coefficient) [s] 7.4 

 

l,l0 Longueur, longeur initiale (Length, initial length) [m] 1.12 

L Longueur (Length) [m] 8.15 

L Longueur de la conduite ou de la fibre (Duct or fiber length) [m] 8.5 

L(ts ) Spectre de retard (Retardation spectrum) [-] 4.6 

L[ ] Transformée de Laplace (Laplace Transform)  2.27 

 

m Paramètre du modèle de Findley (Parameter of Findley’s model) [s-n] 2.4 

m Paramètre du modèle de Bird-Leider 

 (Parameter of Bird-Leider’s model) [Pa×s-n] 12.16 

m Ordre réactionnel (Reaction order) [-] 11.4 

M Couple (Torque) [N×m] 9.6 

M Masse (Mass) [kg] 8.15 

MC Poids moléculaire critique (Critical molecular weight) [g×mol-1] 7.7 

MW Poids moléculaire moyen en masse  

 (Weight average molecular weight) [g×mol-1] 6.7 

 

n Indice de pseudo-élasticité (Pseudo-elasticity number) [-] 6.4 

n Variable en analyse dimensionnelle  

 (Variable in dimensional analysis) [-] 8.16 

n Ordre réactionnel (Reaction order) [-] 11.4 

n Concentration ionique (Ionic concentration) [-] 12.8 

N Nombre (Number) [-] 13.11 

NH/vdW Rapport des interactions hydrodynamiques et de van der Waals 

  (Ratio between hydrodynamic and van der Waals interactions) [-] 12.7 

N1 Première différence normale (First normal difference) [Pa] 1.9 

N2 Deuxième différence normale (Second normal difference) [Pa] 1.9 
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P,P0 Pression, pression de référence (Pressure, reference pressure) [Pa] 1.9 

P Périmètre de la section d’une conduite (Duct section perimeter) [m] 10.12 

P Opérateur différentiel (Differential operator)  2.6 

Pd Pression exercée sur le piston (Piston pressure) [Pa] 9.1 

Pe Nombre de Péclet (Péclet’s number) [-] 12.7 

 

Q Opérateur différentiel (Differential operator)  2.6 

Q Débit (Flow Rate) [m3×s-1] 8.7 

 

r,R Rayon de la conduite (Duct radius) [m] 8.5 

r Coordonnée radiale (Radial coordinate) [m] 8.6 

R Constante des gaz parfaits (kNA ; Gaz constant) [J×mol-1×K-1] 5.3 

R(t) Fonction de relaxation (Relaxation function) [Pa] 1.12 

Rb Rayon du réservoir (Reservoir radius) [m] 9.1 

Rh Rayon hydraulique équivalent (Equivalent hydraulic radius) [m] 10.12 

Rv(t) Partie visqueuse de la fonction de relaxation  

 (Viscous part of the relaxation function) [Pa] 2.17 

Re Nombre de Reynolds (Reynolds's number) [-] 1.17 

 

t,T Temps (Time) [s] 1.2 

T Température (Temperature) [K] 2.2 

Tg Température de transition vitreuse (Glass transition temperature) [K] 5.3 

Tg0 Température de transition vitreuse du liquide non réagi  

 (Glass transition temperature of unreacted liquid) [K] 11.11 

Tg¥ Température de transition vitreuse du solide complètement réticulé  

 (Glass transition temperature of fully crosslinked solid) [K] 11.11 

TR Rapport de Trouton (Trouton's ratio) [-] 1.18 

 

u,U Vitesse du fluide (Flow velocity) [m×s-1] 1.7 

uf Vitesse de frottement (Friction velocity) [m×s-1] 10.6 

ux,uy,uz Composantes du champ de vitesse (Velocity field components) [m×s-1] 8.3 

ur,uq,uz Composantes du champ de vitesse (Velocity field components) [m×s-1] 9.6 

U0 Vitesse de la plaque (Plate velocity) [m×s-1] 8.5 
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v* Volume d’activation (Activation volume) [m3] 4.8 

ve Vitesse d’électrophorèse (Electrophorese rate) [m×s-1] 12.9 

V Volume spécifique disponible (Available specific volume) [m3×kg-1] 5.6 

V Vitesse caractéristique du fluide (Characteristic fluid velocity) [m×s-1] 1.17 

V Volume du fluide (Fluid volume) [m3] 10.13 

VA Potentiel d’attraction (Attraction potential) [V] 14.3 

VR Potentiel de répulsion (Repulsion potential) [V] 14.3 

Vf Volume libre spécifique (Specific free volume) [m3×kg-1] 5.6 

Vfg Volume libre spécifique à Tg (Specific free volume at Tg) [m3×kg-1] 5.6 

Vg Volume spécifique à Tg (Specific volume at Tg) [m3×kg-1] 5.6 

V0 Volume spécifique occupé par les atomes (molécules) [m3×kg-1] 5.6 

 

W Energie (Energy) [J] 3.9 

We Nombre de Weissenberg (Weissenberg number) [-] 1.17 

 

x,y,z Coordonnées spatiales (Spatial coordinates) [m] 1.4 

 

z Valence ionique (Ionic valence) [-] 12.8 

 

Grecs 

 

a Avancement ou taux de la réaction (Reaction rate) [-] 11.4 

a Facteur d’encombrement stérique (Steric packing factor) [-] 13.4 

a,ag,al Coefficients d’expansion thermique, à l’état vitreux, à l’état liquide 

 (Coefficients of thermal expansion, in glassy state, in liquid state)    [K-1] 5.6 

a Angle du cône (Cone angle)  [°] 9.7 

 

b Exposant du modèle KWW (KWW model exponent) [-] 4.4 

 

c Compressibilité, à l’état vitreux, à l’état solide (Compressibility) [Pa-1] 5.8 

cg,cl Compressibilité à l’état vitreux, à l’état solide 

 (Compressibility in glassy state, in liquid state) [Pa-1] 7.11 
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d Angle de phase (Phase angle) [-] 3.4 

d Entrefer (Gap) [m] 9.6 

d Epaisseur de la couche visqueuse (Thickness of viscous layer) [m] 10.7 

d (t) Fonction de Dirac (Dirac function) [-] 2.26 

d (x) Couche limite (Boundary layer) [m] 10.13 

 

e Déformation, élongation (Strain, Deformation, Elongation) [-] 1.2 

e Constante diélectrique (Dielectric constant) [-] 12.8 

#̇ Vitesse de déformation (Strain rate) [s-1] 2.2 

e0 Déformation initiale, amplitude de la déformation  

 (Initial strain, strain amplitude) [-] 2.4 

ea Déformation d’un amortisseur (Deformation of a dashpot) [-] 2.7 

ed Déformation élastique retardée, fluage primaire (Elastic after-effect)  [-] 1.15 

eé Déformation élastique instantanée  

 (Instantaneous elastic deformation) [-] 1.15 

eh Déformation volumique hydrostatique  

 (Hydrostatic volume deformation) [-] 1.11 

er Déformation d’un ressort (Spring's deformation) [-] 2.7 

es Fluage secondaire (Secondary creep) [-] 2.4 

ev Ecoulement visqueux, fluage secondaire (Viscous flow) [-] 1.15 

e0 Permittivité du vide (Vacuum permittivity) [-] 12.8 

 

f Fraction volumique des particules (Particles volume fraction) [-] 13.1 

fa Fraction volumique des agrégats (Volume fraction of aggregates) [-] 13.6 

fmax Fraction volumique maximale (Maximum volume fraction) [-] 13.5 

fsec Fraction volumique des particules sèches  

 (Volume fraction of dry particules) [-] 13.7 

fsolv Fraction volumique des particules solvatées  

 (Volume fraction of solvated particules) [-] 13.7 

 

h Viscosité dynamique (Dynamic viscosity) [Pa×s] 1.1 

h’ Viscosité en phase (Real part viscosity) [Pa×s] 11.7 



 Liste des symboles 8 

h’’ Viscosité hors phase (Imaginary part viscosity) [Pa×s] 11.7 

h* Viscosité complexe (Complex viscosity) [Pa×s] 11.7 

ha Viscosité apparente (Apparent viscosity) [Pa×s] 8.13 

hCa Viscosité de Casson (Casson’s viscosity) [Pa×s] 14.4 

hE Viscosité élongationnelle (Elongational viscosity) [Pa×s] 1.18 

hg Viscosité à la température de transition vitreuse (Viscosity at Tg) [Pa×s] 7.13 

hN Viscosité Newtonienne (Newtonian viscosity) [Pa×s] 13.13 

hred Viscosité réduite (Reduced viscosity) [-] 13.2 

hrel Viscosité relative (Relative viscosity) [-] 1.6 

hsp Viscosité spécifique (Specific viscosity) [-] 1.6 

h0 Viscosité du solvant (Solvent viscosity) [Pa×s] 1.6 

h0 Viscosité à une vitesse de cisaillement nulle  

 (Zero shear-rate viscosity) [Pa×s] 7.1 

h¥ Viscosité à une vitesse de cisaillement infinie  

 (Infinite shear-rate viscosity) [Pa×s] 7.1 

[h] Viscosité intrinsèque (Intrinsic viscosity) [-] 1.6 

 

k Consistance (Consistency) [Pa×sn] 6.4 

k Paramètre de la loi logarithmique (Logarithmic lay parameter) [-] 10.7 

k  -1 Epaisseur de la double couche (Thickness of the double layer) [m] 12.8 

 

l Temps caractéristique du fluide (Characteristic time of the fluid) [s] 1.17 

l Coefficient du facteur de forme (Aspect ratio coefficient) [-] 13.8 

lC Constante de temps caractéristique, temps de relaxation 

 (Characteristic time constant, relaxation timet) [s] 10.1 

 

g Déformation de cisaillement (Shear strain) [-] 1.1 

!̇,	!̇0 Vitesse de cisaillement, de référence (Shear rate, reference) [s-1] 1.1 

!̇a Vitesse de cisaillement apparent (Apparent shear rate) [s-1] 8.9 

!̇w Vitesse de cisaillement à la paroi (Wall shear rate) [s-1] 8.9 

 

n Coefficient de Poisson (Poisson’s coefficient) [-] 1.11 
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n Viscosité cinématique (Kinematic viscosity) [m2×s-1]=[St] 1.6 

 

P Produit de variable (Product of variables) [-] 8.16 

 

r Densité, masse spécifique (Density) [g×cm-3] 1.6 

 

s,s0 Contrainte, contrainte initiale, amplitude de la contrainte 

 (Stress, initial stress, stress amplitude) [Pa] 1.2 

sij Tenseur des contraintes (Stress tensor) [Pa] 1.9 

sM Tenseur des contraintes hydrostatiques (Hydrostatic stress tensor)  [Pa] 1.10 

sD Tenseur déviatorique des contraintes (Deviatoric stress tensor) [Pa] 1.10 

sa Contrainte d’un amortisseur (Stress of a dashpot) [Pa] 2.11 

sr Contrainte d’un ressort (Stress of a spring) [Pa] 2.11 

 

q Coordonnée tangentielle (Tangential coordinate) [m] 8.6 

Q Température (Temperature) [K] 8.15 

Q Période de moyennage (Averaging period) [s] 10.5 

 

t Contrainte de cisaillement (Shear stress) [Pa] 1.1 

tw Contrainte de cisaillement à la paroi (Wall shear stress) [Pa] 9.1 

ts Temps de retard (Delay time) [s] 2.16 

te Temps de relaxation (Relaxation time) [s] 2.17 

t0 Seuil d’écoulement (Yield stress) [Pa] 13.12 

 

w Vitesse angulaire ou pulsation (Angular frequency or pulsation) [s-1] 3.2 

 

x Déplacement en x (x-displacement) [m] 1.3 

 

z Déplacement en y (y-displacement) [m] 1.3 

z Potentiel zêta (Zeta potential) [V] 12.9 

 

 



 Liste des symboles 10 

y1,y2 Fonctions matérielles ou viscosimétriques 

 (Material or viscosimetric functions) [Pa×s2] 1.10 

Y Potentiel électrostatique (Electrostatic potential) [V] 12.8 

 

V Temps caractéristique du procédé d’écoulement 

 (Characteristic time of the flow process) [s] 1.18 

 

 

 


